

i

Gottfried Wilhelm

Leibniz University of Hanover

Faculty of Electrical Engineering and Computer Science

Institute of Practical Computer Science

Department of Software Engineering

Architectural analysis and implementation of an

AI component for appointment optimization for

dentists

(Architekturanalyse und Implementierung einer KI-Komponente zur

Terminoptimierung für Zahnärzte)

Bachelor's Thesis

in the field of Computer Science

by

Mohammad Ali Ferdowsi

Examiner: Prof. Dr. Kurt Schneider

Second examiner: Dr. Jil Klünder

Supervisor: M.Sc. Jianwei Shi

Hannover, 15.05.2024

ii

Declaration of Independence

I hereby affirm that I have composed the present bachelor's thesis independently and

without any external assistance, and that I have not used any sources or aids other

than those stated in the thesis. The thesis has not been submitted to any examination

office in the same or a similar form.

Hannover, 15.05.2024

 Mohammad Ali Ferdowsi

iii

Content Adjustment

The initial thesis, titled "Architectural analysis and implementation of an AI

component for appointment optimization for dentists" aimed to develop a

scheduling software with integrated AI functionality focused on optimizing

appointments. However, due to the complex nature of AI integration, time

constraints, and challenges in acquiring suitable training data, the project's

focus was revised. The updated title, "Architecture Analysis and

Implementation of Software for Appointment Optimization for Volunteers"

reflects this shift, concentrating on software architecture and implementation

while ensuring a thorough and feasible thesis completion within the set

timeframe. Instead of integrating AI functionality, the thesis now develops an

algorithm to optimize appointments.

iv

Contents

Abstract .. ix

1. Introduction .. 1

1.1 Presentation of Problem .. 2

1.2 Solution approach .. 2

1.3 Structure of thesis ... 3

2. Foundational Information ... 4

2.1 Software Development Process Models .. 4

2.2 Agile Model ... 4

2.3 Waterfall Model .. 5

2.4 Kanban Model ... 5

2.5 Microservice-Architecture .. 6

2.6 Spring .. 6

2.7 Spring Boot ... 6

2.8 Angular ... 6

2.9 Kano Model ... 8

2.10 Analyzing Requirements .. 9

2.11 OpenAPI ... 11

2.12 Contract-First API Development .. 12

3. Related Work and Market Analysis .. 15

3.1 Related Work ... 15

3.2 Market Analysis.. 16

4. Requirements Analysis.. 18

4.1 Requirements Elicitation ... 18

4.2 Interview ... 18

4.3 Specification .. 19

4.3.1 Goal Definition.. 19

4.3.2 Functional Requirements .. 20

4.3.3 Non-Functional Requirements ... 21

4.3.4 Mockups .. 22

4.3.5 Compromises ... 24

5. Implementation ... 25

5.1 Approach ... 25

5.2 Technologies .. 25

5.3 Architecture .. 26

v

5.4 Configuration .. 28

5.5 Best Practices .. 28

5.6 Scheduling Optimization Algorithm .. 29

6. Testing and Evaluation .. 32

6.1 Testing .. 32

6.2 Evaluation ... 32

6.2.1 Study design ... 33

6.2.2 Participants .. 34

6.2.3 Study Results .. 35

6.2.4 Threats to Validity and Challenges .. 38

6.2.5 Summarizing Results ... 39

7. Conclusion .. 40

8. Future Development ... 41

8.1 AI Integration ... 41

8.2 Gamification .. 42

8.3 Roadmap ... 43

Appendix A - Specification .. 47

Appendix B - Domain Design .. 69

Appendix C - Developed Application Screenshots ... 71

USB Content ... 76

vi

List of Figures

Figure 1 - Waterfall model life cycle .. 5

Figure 2 - Example of a kanban board .. 5

Figure 3 - Kano model ... 9

Figure 4 - Overview of the requirements analysis tasks ... 10

Figure 5 - Example of an OpenAPI Specification .. 12

Figure 6 - Auto-generated code for backend in Spring from example specification 13

Figure 7 - Auto-generated code for frontend in Angular from example specification . 14

Figure 8 - Use case for [FR6] ... 21

Figure 9 - Mockup for the homepage ... 23

Figure 10 - Mockup for the calendar page ... 23

Figure 11 - Application architecture design ... 26

Figure 12 - Segment of domain design ... 27

Figure 13 - Simplified example of OnPush usage in the application 29

Figure 14 - Usage scenario for the optimization algorithm .. 31

Figure 15 - Participant demographic charts ... 35

Figure 16 - SUS Score for each participant and the overall average 36

Figure 17 - Leaderboard page mockup ... 43

vii

List of Tables

Table 1 - Usability goal definition ... 33

Table 2 - User experience goal definition ... 33

Table 3 - Feature discovery goal definition .. 34

Table 4 - Recommendations and Observations gathered from the survey 37

viii

List of Codes

Code 1 – Initializing a variable in Typescript .. 7

Code 2 – Data binding in HTML ... 7

Code 3 - Dependency Injection .. 7

ix

Abstract

In today's world, the right software is crucial for teams to work together effectively,

especially in projects that rely on the goodwill and coordination of volunteers. Good

software helps teams communicate better, manage their resources efficiently, and

ensure everyone is on the same page. The Zahnmobil project, a collaborative non-profit

initiative powered by volunteer dentists, assistants, and drivers, along with financial

contributions from dedicated individuals, is committed to providing essential dental

care to those in need. This thesis emphasizes the development of a user-friendly

software solution, particularly tailored to meet the needs of the Zahnmobil project.

Central to this thesis is a thorough requirements analysis for a detailed understanding

of the system's essential needs, followed by an architecture design aimed at creating a

maintainable and robust framework. The implementation of the web application used

a Contract-First API development approach utilizing OpenAPI. Additionally,

enhancing usability was a primary objective of the application. The final stages include

testing and a systematic evaluation to assess performance and user satisfaction,

ensuring that the software not only meets the immediate operational needs but also

sets a foundation for future enhancements. In the evaluation phase, a System Usability

Scale (SUS) survey was conducted with 12 participants, resulting in an average SUS

score of 96.67, indicating excellent usability.

1

Chapter 1

1. Introduction

Effective collaboration is key in any team endeavor, and this is particularly true for

projects that depend on volunteer participation. The right technological tools can make

all the difference, enabling clear communication, efficient organization, and cohesive

teamwork. Managing volunteer-driven projects effectively calls for straightforward and

intuitive scheduling and management systems. These tools simplify team coordination

and improve workflow efficiency [19]. The objective is to create an intuitive and user-

friendly web application that enhances overall efficiency, facilitates coordination

processes, and guarantees straightforward maintainability. Complex procedures for

straightforward tasks, the lack of essential administrative capabilities, and systemic

inconsistencies can significantly undermine user experience. Such obstacles not only

diminish user satisfaction but can also deter their willingness to participate. Moreover,

the high support costs associated with the current Zahnmobil system further complicate

matters, as Zahnmobil is a nonprofit organization, making efficient cost management

crucial. Recognizing these challenges, the necessity for a simplified, efficient software

solution becomes clear. This thesis delves into software development, focusing on

requirement analysis, architectural design, implementation, testing and evaluation. The

initial phase involves extensive requirement analysis research to comprehensively

understand user needs. This important step informs subsequent stages of the project,

ensuring that the software aligns with the actual requirements of the Zahnmobil project.

The thesis then progresses into the architectural design phase, aiming to establish a

flexible and maintainable system architecture. Transitioning into the implementation

phase, the focus shifts to crafting a user-friendly software application, utilizing several

best practices throughout this phase. Finally, the project highlights thorough testing

and evaluation, focusing on assessing the usability of developed application and

gathering feedback from the end-users of the Zahnmobil project through a survey. This

evaluation ensures the software effectively supports the scheduling and operational

needs of the Zahnmobil. This thesis is conducted in partnership with adesso, a leading

IT service provider in Germany known for its expansive network and strong emphasis

on future-oriented technology solutions.

2

1.1 Presentation of Problem

Confronting the complexities of application development within a constrained four-

month period presents a formidable challenge, particularly when the aim is to

accommodate a user base with a wide spectrum of technological expertise. Despite these

variances, it is imperative for the application to uphold an intuitive and user-friendly

approach. This ensures every volunteer, irrespective of their comfort with technology,

can effectively engage with the system. Additionally, it is important that the

application not only fulfills the requirements but also embodies a scalable structure and

maintainable framework, allowing for future enhancements and development.

1.2 Solution approach

The aim is to develop a tool that is not only efficient and effective but also user-friendly

for all, regardless of IT skill or age. A planned communication strategy aligns the

project with the Zahnmobil project's vision. Regular weekly meetings with the

stakeholder, ensures continuous updates, idea exchanges, and feedback incorporation.

The thesis begins with a research phase that focuses on requirement analysis

methodologies and best practices in requirements engineering. This groundwork ensures

a thorough understanding of the Zahnmobil project's needs. With the requirements

defined, the project emphasizes developing a maintainable and scalable architecture for

the application. By adhering to standards that accommodate future changes and

growth, the architecture is ensured to be practical and adaptable for long-term use.

Additionally, feedback on the developed architecture was sought from a senior architect

designer at adesso, enhancing its effectiveness and alignment with professional

standards. During the implementation phase, the plans are brought to life with a focus

on developing an intuitive and user-friendly interface. The design leverages principles

of Human-Computer Interaction (HCI) to meet high usability standards. Best

practices, such as Contract-First API Development, are applied throughout the

implementation to enhance both quality and effectiveness. Furthermore, testing and

refinement are essential to ensure the product not only meets the initial requirements

but also stands up to real-world use. This testing strategy employs both automated

and exploratory testing to ensure all components work seamlessly and meet the required

specifications. Finally, the developed application is assessed with the end users of the

Zahnmobil project through a semi-structured interview process. This involves a

practical session where users test the application, followed by a survey where the

Standard Usability Scale (SUS) is utilized.

3

1.3 Structure of thesis

Chapter 2 provides the foundational information necessary to understand the thesis,

while Chapter 3 discusses related works and includes a brief market analysis. Chapter

4 describes the process of conducting the requirements analysis. Chapter 5 outlines the

system's architectural design and the implementation of the application. Chapter 6

discusses the testing strategies deployed and explores the evaluation of the application

through end-user feedback analysis. Chapter 7 concludes the thesis, summarizing key

findings. Lastly, Chapter 8 discusses potential future developments, outlining

opportunities for further development.

4

Chapter 2

2. Foundational Information

This Chapter covers essential definitions of theoretical and technological foundational

information’s that form the basis of this thesis. Understanding these foundational

elements is important for following the discussions in later chapters.

2.1 Software Development Process Models

The Software Development Process Model, also known as the Software Development

Life Cycle (SDLC), outlines the various activities required for software evolution

throughout its lifecycle. It recommends a specific methodology for conducting these

activities across the lifecycle and advises on the documents and artifacts that should

be generated at the end of each phase. The primary advantage of employing a

development process is that it offers a systematic and disciplined framework for

development [11]. There are currently many different SDLC models available, such as

the Waterfall Model, Kanban Model, and Agile. Each offers its own unique advantages

and disadvantages. These models provide structured approaches to software

development, catering to various project requirements, team sizes, and goals. Choosing

the right model is crucial for effective project management and successful software

delivery, as it influences how tasks are approached, executed, and completed

throughout the development process [1].

2.2 Agile Model

Agile methodology focuses on adaptability to changing requirements and emphasizes

customer satisfaction through the quick delivery of useful software. It encourages

welcoming changes at any stage of development and ensures the frequent release of

working software, often within weeks. The central principle of Agile is to continually

meet customer needs by delivering small, practical increments of software rapidly [4].

5

2.3 Waterfall Model

The Waterfall model is a linear and sequential approach to software development,

where each phase is completed fully before moving on to the next, without overlap or

parallelization. This model offers several benefits: it is easy to implement because of its

linear structure, it clarifies requirements before development starts, and it requires

minimal resources for execution [4].

Figure 1 - Waterfall model life cycle

2.4 Kanban Model

The Kanban Model, first developed in the 1950s for Toyota's manufacturing process,

has become a widely adopted agile methodology across various industries, including

software engineering. Its core principles focus on enhancing team efficiency in daily

operations through several key practices. These practices include visualizing the

workflow on a Kanban board, limiting the amount of work in progress, and managing

the flow of tasks. This approach helps teams to streamline processes and improve

productivity [6].

Figure 2 - Example of a kanban board

6

2.5 Microservice-Architecture

Microservice architecture adopts the strategy of breaking down a software application

into a multitude of small, independently functioning services, each loosely connected to

the others. This approach moves away from the monolithic architecture model, where

all functionalities are embedded within a single, large application. By enabling each

service to run its own process and interact through lightweight communication

methods, this architecture facilitates a design that is significantly more scalable and

easier to maintain [10].

2.6 Spring

Spring is a Java framework designed for building web applications. It provides a robust

suite of data persistence options, a comprehensive security framework, and extensive

microservices support. Essentially, Spring operates through a core container known as

the Spring Application Context, which orchestrates the creation and management of

application components, also called beans. These beans are intricately interconnected

within the Spring Application Context to assemble a fully functional application. This

process is analogous to constructing a jigsaw puzzle, where each piece represents a

distinct component that, when connected, forms a complete picture—in this case, a

cohesive application [22].

2.7 Spring Boot

Spring Boot is an extension of the Spring framework that simplifies the process of

creating standalone, production-grade applications based on Spring. It achieves this by

offering default configurations, thus eliminating the need for extensive Spring setup.

Additionally, Spring Boot enhances applications with non-functional features such as

security and externalized configuration, making development faster and more efficient

[23].

2.8 Angular

Angular is a framework designed for building applications, offering a standardized

structure that enhances maintainability and scalability for large projects. Key features

of Angular include:

7

1. Custom Components: Angular enables the creation of custom, declarative

components that encapsulate both functionality and rendering logic, facilitating

reuse across applications.

2. Data Binding: It simplifies the process of displaying data from the TypeScript

code in the view. For instance, when a string variable named 'title' in the

TypeScript code (see Code 1) changes, its updated value is automatically

reflected in the HTML view (see Code 2), thanks to Angular's data binding

mechanism.

1

2

3

export class AppComponent {

 title: string = 'Hello World!';

}

3. Dependency Injection: This feature supports the modular creation of services

that can be injected as needed, enhancing both the testability and reusability of

these services. An example of this is injecting a 'LoginService' into the

constructor of a login component, which then manages the logic for user

authentication.

1

2

3

export class LoginComponent {

 constructor(private logInService: LoginService) {}

}

4. Testability: Angular has been engineered with a focus on making every

component of the application easily testable.

5. Comprehensiveness: Angular is a comprehensive framework, offering a wide

array of features and tools for server communication, routing, and more, making

it a robust solution for web application development [20].

1 <div>{{title}}</div>

Code 1 – Initializing a variable in Typescript

Code 2 – Data binding in HTML

Code 3 - Dependency injection example

8

2.9 Kano Model

Introduced by Dr. Noriaki Kano in 1978, the Kano Model classifies system requirements

into three categories:

1. Basic attributes: Basic needs are features that are automatically expected and

assumed.

2. Performance attributes: Performance needs are the special features that are

explicitly requested.

3. Excitement attributes: Excitement attributes are product features that the

stakeholder is initially unaware of and discovers as pleasant surprises during use.

Among stakeholders, a process of habituation occurs where what once excited them

gradually becomes expected and then basic over time. Consequently, this habituation

necessitates a commitment to consistent innovation and the introduction of creative

ideas. Furthermore, Understanding the correlation between customer satisfaction and

the degree of fulfillment of different types of requirements is crucial. Basic attributes

are essential and must be implemented; their absence leads to significant dissatisfaction,

while their presence alone does not guarantee full satisfaction. Performance attributes,

when fulfilled, enhance customer satisfaction; however, their absence might still be

tolerated by customers, though it increases dissatisfaction with each missing element.

Excitement attributes can significantly boost customer satisfaction if implemented, yet

their absence doesn't necessarily lead to dissatisfaction [17].

9

Figure 3 - Kano model

2.10 Analyzing Requirements

In Requirements analysis, after gathering the initial requirements through requirements

elicitation, the next step is to analyze the requirements. The goal of analyzing initial

requirements is to develop solid and dependable requirements efficiently, using minimal

resources. This process helps ensure the collection of requirements meets quality

standards and assists in determining where further improvements are needed. It's not

necessary to document every new requirement that emerges from this analysis. Instead,

these new requirements mainly serve as a basis for deeper analysis. Analyzing the

requirements involves the following steps:

1. Define Original Requirements: Define the initial requirements through

requirements elicitation.

2. Separate Requirements: Separate the original requirements into multiple,

distinct requirements if necessary. This approach allows each component to be

individually assessed in subsequent stages. For example, a requirement to create

operations and for an administrator to enroll users in these operations can be

divided into two parts: one focusing on the ability to create operations, and

another on the administrator's ability to enroll users in the created operations.

10

3. Extract Necessary Requirements: This step ensures that the requirements

accurately reflect what the system should deliver, neither exceeding nor falling

short of its intended capabilities. It is crucial that the requirements are realistic

and achievable within existing constraints, such as development timelines. For

example, the requirement for a responsive design for mobile users was evaluated

against the time constraints and identified as a potential area for compromise.

4. Abstract Requirements: Abstraction aids in forming a comprehensive,

preliminary view of the system's requirements. It serves as a common foundation

for the identified requirements. For example, the specific ability for

administration to edit usernames can be abstracted to a broader capability

where administration can edit user profiles.

5. Supplement Missing Requirements: From the tasks defined earlier, we

initially identified requirements that directly stemmed from the original

specifications. Now, we are expanding these to include aspects that were not

explicitly mentioned by stakeholders but are somewhat implied by the previously

identified requirements. For instance, allowing administrators to edit user

profiles raises further questions: Should administrators be able to modify a user's

email address or role? Can an administrator grant or remove administrative

rights from another user? These additional requirements must be discussed and

clarified with the stakeholders.

6. Refine Requirements: For each identified requirement, the question is asked

whether it should be described in greater detail.

7. Improve Requirements: In this final task, we review and potentially improve

each previously identified requirement to ensure its quality. This involves

verifying that the conditions within each requirement are complete and correct.

For example, if a requirement states that users can sign up for an operation, it

should also specify that a user can enroll if their corresponding role in the

operation is available [17].

Figure 4 - Overview of the requirements analysis tasks

11

2.11 OpenAPI

OpenAPI is a specification for describing HTTP-based APIs using either YAML or

JSON formats. This specification, which outlines an API’s inputs and outputs, can be

manually crafted or auto-generated from existing code. Once prepared, the specification

facilitates the creation of user-friendly documentation and even generation of server

stubs for API implementation. Some advantages of using OpenAPI include:

1. Tooling Support: OpenAPI specifications are supported by various tools like

Swagger Codegen and OpenAPI Generator, which aid in creating applications

that communicate with the API. These tools can generate necessary code

automatically, offering a significant jumpstart in the application creation

process. Other tools, such as Swagger UI, can also be used for visualizing the

API definitions.

2. Customization: The OpenAPI definition can be customized to meet specific

needs, which helps in creating templates that are specific to your requirements.

3. Speed and Consistency: OpenAPI can speed up the development process and

ensure consistency across different APIs.

4. Standardization: OpenAPI assists in standardizing all APIs in consistent

patterns, which is particularly beneficial when managing more than one API.

This helps in measuring those patterns and improving the overall design and

consumption of APIs [15].

This example outlines an OpenAPI specification with an endpoint for fetching the data

of a logged-in user (see Figure 5). Line 6 specifies the API's local access point as port

8080. Line 8 introduces an endpoint, '/api/v1/whoami', and the subsequent lines

describe its method—GET—and provide a summary. This level of detail aids in the

documentation of APIs. Then, at line 14 till 22, the expected successful (200 OK) and

error (400 Something went wrong) responses are detailed. The successful response

returns the whoAmIModel schema. At line 26 till 47, the whoAmIModel schema is

defined which is a Data Transfer Object (DTO).

12

Figure 5 - Example of an OpenAPI Specification

2.12 Contract-First API Development

In API development, two primary approaches are utilized: Code First and Contract

First (Design First). The Code First approach involves initially writing the API code

and then generating the documentation afterwards with generative tools. On the other

hand, the Contract First approach begins with the creation of a detailed API

specification such as an OpenAPI Specification. This specification is not only more

maintainable but can also be used to generate API stub code for both the frontend and

backend simultaneously. This approach enables parallel development across different

development teams and in many cases the result is a faster time-to-market for multiple

implementations and more consistent documentation [12]. Figures 6 and 7 illustrate

13

the generated code for the backend in Spring and the frontend in Angular, respectively,

from the specification at Figure 5.

Figure 6 - Auto-generated code for backend in Spring from example specification

14

Figure 7 - Auto-generated code for frontend in Angular from example specification

15

Chapter 3

3. Related Work and Market Analysis

The following chapter examines related works and conducts a market analysis to

identify existing products that could be utilized for this project.

3.1 Related Work

In the book "Requirements-Engineering und -Management" by Rupp et al. [17],

essential practices and methodologies of requirements engineering are explored in

depth. This comprehensive guide covers the critical steps of gathering, analyzing, and

managing requirements within various project settings, including both agile and

traditional frameworks. In the thesis, Chapters 8 (Requirement Elicitation), 11

(Deriving Good Requirements), 12 (Analyzing Requirements), 16 (Documenting and

Communicating Requirements), 17 (Communicating Requirements through

Storytelling and User Stories), and 18 (Modeling Requirements) from the book guided

the process presented in Chapter 4, from initial requirement gathering to finalizing the

specification document.

Muhammad Fazril Bin Mohd Amin's dissertation focuses on the development of a

Volunteer Management System (VMS) that partially automates work scheduling and

volunteer hour tracking. The current system, as described in the dissertation, involves

a weekly sign-up by volunteers to confirm availability, which is then used by human

resources to create duty rosters. This method is time-consuming for both volunteers

and staff. The proposed VMS aims to streamline this by combining the sign-up process

and roster generation into a single, user-friendly application. Due to the similarities in

the objectives of developing a VMS and addressing issues in existing systems, this

dissertation was reviewed to gain insights into the approaches used and the topics

discussed for developing the volunteer management system [13].

The study "Online Students’ Appointment System for University Administration" by

Zurah Abu et al. focuses on transitioning the appointment scheduling process at

Universiti Teknologi MARA from manual to an online system. This transformation

16

addresses inefficiencies such as delayed confirmations and poor scheduling

prioritization. The study reveals a high demand for a more organized appointment

process among students and staff, with a majority expressing dissatisfaction with the

existing manual system. The proposed solution involved developing a web-based system

that allowed for streamlined scheduling, automated reminders, and easier access to

appointment statuses. Like our project, both studies concentrate on thoroughly

analyzing existing challenges to create effective scheduling systems. Additionally, both

works utilized the waterfall methodology and included an evaluation phase, where a

Standard Usability Scale was utilized to assess the effectiveness of the solutions [2].

The work "Online Scheduling System for Doctors and Patients in a Hospital" by De

Guzman et al. developed an online system aimed at reducing patient wait times and

improving the scheduling process for outpatient services in hospitals, using web-based

technologies to enable appointment bookings and doctor availability checks. This study

provides valuable insights into the application of scheduling systems in healthcare

settings. Both studies included an evaluation phase where the effectiveness of the

systems was assessed using the Standard Usability Scale (SUS), emphasizing the

importance of user feedback in the development process. While De Guzman et al. focus

on developing an online appointment scheduling system to reduce patient wait times

and improve the efficiency of the outpatient department, our project centers on

developing a system for volunteer management and scheduling within nonprofits,

prioritizing usability to accommodate volunteers varied technical skills. This distinction

underscores the adaptability of scheduling technologies to meet diverse operational

needs across different sectors [7].

One notable difference between our thesis and the works by Muhammad Fazril Bin

Mohd Amin, Zurah Abu et al., and De Guzman et al., is the depth of our requirements

analysis, implementation processes, and testing. In our thesis, these processes were

focused on and discussed in a more comprehensive fashion. Additionally, several best

practices were discussed and employed in the implementation of our system.

3.2 Market Analysis

A market analysis was conducted to determine the feasibility of using existing

Customer Relationship Management (CRM) systems for the Zahnmobil project.

Various CRM products were examined, including Zoho, which offers extensive features

such as analytics, process management, contact management, and calendar

appointments. However, for the specific needs of Zahnmobil users, these features

17

introduce unnecessary complexity. The primary requirements of the Zahnmobil project

do not align with the comprehensive capabilities provided by these systems.

Additionally, calendar components from libraries like FullCalendar and DayPilot were

evaluated for their functionality, which includes multiple views (month, week, day) and

high customizability. Despite these advantages, the stakeholder of Zahnmobil expressed

a preference for an improved version of the existing Zahnmobil application's calendar.

They indicated that while an advanced calendar component could be beneficial, it is

considered a non-essential enhancement and was therefore not adopted in the project.

18

Chapter 4

4. Requirements Analysis

This chapter discusses the requirements analysis conducted with the stakeholder of

Zahnmobil, guided by the methodologies and principles outlined in [17]. The goal of

this chapter is to create a specification that precisely describes the system's services

and constraints.

4.1 Requirements Elicitation

Before conducting the requirements elicitation, research was conducted on the

Zahnmobil project to better understand the context of the project. Subsequently, a

discussion with the stakeholder was held to gain an understanding of their desires. This

included a contextual inquiry to assess the old system, aiming to reuse existing

requirements while identifying and avoiding the replication of previous problems.

During this discussion, the product owner's approach to conceptualizing ideas was

assessed—whether they thought in concrete terms or abstracted from real-life

experiences to more general concepts. This understanding is essential because if the

product owner tends to use real-life examples, it becomes the interviewer's task to

abstract these into broader requirements and validate them. Conversely, if the product

owner speaks in abstract terms, introducing concrete examples is necessary to clarify

and confirm the requirements. In this case, the product owner demonstrated the ability

to strike a balance between abstraction and concrete examples, providing each as

needed. Given the product owner's availability, an interview-based elicitation approach

was selected for this thesis.

4.2 Interview

The interview process is divided into three stages: preparation, execution, and follow-

up. During the preparation phase, an interview protocol is developed to guide the

interview (complete interview protocol in USB Content). This protocol is essential for

distinguishing between critical and non-critical topics and providing a structured

19

approach. It includes bullet points that remind the interviewer of key points, such as

summarizing each topic before jumping into a new one with clear examples for mutual

understanding, maintaining a focus on priority requirements, and asking thorough

questions to eliminate any ambiguities. The interview protocol included questions about

functional and non-functional requirements, user interface preferences, technological

preferences, and the data managed by the existing system. Understanding this data is

important for later developing an optimization algorithm for scheduling. With the

interview protocol in place, a semi-structured interview was conducted with the

stakeholder, for which recording consent was also obtained. The recorded interview

enabled the capture of detailed responses that might have been overlooked during note-

taking. This ensured a comprehensive documentation of the interview. After the

interview, the responses were reviewed and validated against the notes taken during

the interview and the recording. The answers were refined as needed to ensure clarity.

The finalized interview protocol was then promptly sent to the stakeholder within two

days for approval, ensuring that the information remained current and accurately

reflected in the project details. With the initial requirements defined, the Kano Model

was utilized to prioritize and further discuss the requirements with the stakeholder.

Furthermore, the process of analyzing the requirements was conducted and is detailed

in Chapter 2.10 of this thesis, which includes relevant examples.

4.3 Specification

Documenting requirements is crucial for maintaining an understanding of project

requirements over time. For documenting these requirements, a traditional

requirements specification was selected due to familiarity and comfort with this

method. To minimize errors in the layout and content of the documentation, the

template from the Software Engineering Group at Leibniz University Hannover was

utilized. The following subsections discuss key parts of the developed specification. The

full specification is included in Appendix A and USB Content.

4.3.1 Goal Definition

The specification outlines the project's goal to develop a web application named

Zahnmobil. This application is designed to assist volunteers in coordinating their

operations and to enable administrators to oversee the project more effectively. Users

will be able to log in, manage their profiles, and enroll in operations. The application

will allow administrators to create and modify operations. Each operation requires three

users, each with distinct roles: dentist, driver, and assistant. Additionally,

20

administrators will have the capabilities to add or edit operation locations and manage

user profiles. The application will also be equipped to send various types of

confirmations or invitations via email. Overall, Zahnmobil is designed to enhance

operational efficiency by focusing on usability as a primary goal, offering an intuitive

and user-friendly interface that simplifies work processes.

4.3.2 Functional Requirements

The functional requirements outlined below, based on the template provided in work

[16], detail the essential capabilities of the application to be developed.

[FR1] The system shall provide users the ability to log in with verified credentials.

[FR2] The system shall provide users the ability to reset their password using a link

sent to their email.

[FR3] The system shall provide users the ability to edit their personal information

after login.

[FR4] The system shall provide administrator the ability to add new operation

locations to the system.

[FR5] The system shall provide administrator the ability to add new operations to the

system.

[FR6] The system shall provide users with specific roles the ability to sign up for

operations and receive confirmation via email and calendar entry.

[FR7] The system shall provide administrator the ability to assign users to specific

roles in operations.

[FR8] The system shall provide the ability to automatically email users to sign up for

unfilled roles one week before the operation.

[FR9] The system will provide administrator the ability to send emails to selected

users from the central administration.

Functional requirements in the specification are defined using use cases, which provide

a structured way to identify and refine the requirements of a system by mapping out

the individual steps needed to perform each use case. Figure 8 illustrates the use case

for [FR6].

21

Figure 8 - Use case for [FR6]

4.3.3 Non-Functional Requirements

The non-functional requirements of the application were discussed with the

stakeholder and prioritized as follows:

1. Usability

2. Maintainability

3. Portability

The most important non-functional requirement for this project is usability. The user

interface should enhance workflows with its intuitive and user-friendly design, catering

to users of all ages and varying levels of IT expertise. Furthermore, the application

must be well-organized to facilitate easy updates and expansions, which will help

minimize errors and adapt quickly to new requirements. Additionally, if time permits,

22

the application should be accessible on mobile devices, requiring a responsive design

for optimal display across different devices. To achieve these quality goals:

• Usability is ensured through the development of mock-ups and continuous

customer feedback. Human-centered design principles are applied, along with

end-user survey to refine the application.

• Maintainability is achieved by ensuring high cohesion and low coupling in the

codebase, adhering to best practices for a well-structured and clearly defined

codebase.

• Portability involves implementing a responsive design to make the application

functional on various mobile devices. This includes testing the design across

multiple dimensions.

4.3.4 Mockups

The design for the high-fidelity mockups was created by drawing insights from the

current official Zahnmobil website. This approach ensured alignment with the

organization's established color scheme and design style. The choice of primary and

secondary colors, as well as those indicating success and errors, was made with a focus

on branding consistency, aesthetics, and readability. An overall goal was to

accommodate the varied IT expertise of the end users, including many older individuals,

by developing an intuitive and user-friendly interface. The layout emphasizes visual

hierarchy, using distinct colors and font sizes to clarify different levels of information.

The homepage is organized into well-defined areas, helping users quickly identify where

to focus their attention. Furthermore, some previous issues with the old application

included the need for unnecessary clicks for certain tasks, such as creating an operation.

The new design simplifies interactions by reducing the number of clicks needed.

Subsequently, dialogs were used to help users focus on subtasks when needed, reducing

cognitive load. A digital calendar was designed as a metaphor for a physical one,

ensuring that online user actions mirror those performed with a physical calendar.

23

Figure 9 - Mockup for the homepage

Figure 10 - Mockup for the calendar page

24

4.3.5 Compromises

Due to time constraints, it's crucial to discuss potential compromises with the

stakeholder and clearly outline them in the specification. The following requirements

have been identified as possible compromises and will only be implemented if time

permits:

• Exporting a calendar/list of users in PDF format

• Responsive design

• Mailing

• User profile data (excluding essential information like last name, first name,

and role)

25

Chapter 5

5. Implementation

Chapter 5 outlines the implementation of the application. It starts by explaining the

selected approach and then explores the application's architecture. Rather than

discussing specific technical details, the chapter emphasizes the best practices and

critical decisions that shaped the implementation. Screenshots of the developed

application are available in Appendix C.

5.1 Approach

A hybrid software development life cycle was adopted to develop the application,

combining elements from Waterfall, Kanban, and Agile methodologies to leverage their

strengths. The implementation was structured around the Waterfall model's linear and

sequential phases, as outlined in Chapter 2.3. This approach ensured simplicity and

clarity, with each stage being completed fully before proceeding to the next and testing

following the completion of development. To manage the flow of tasks and limit work-

in progress effectively, a digital Kanban board was utilized, as detailed in Figure 2.

The Kanban board simplified the visual management of tasks and helped maintain

focus on current priorities. Furthermore, the Agile methodology's iterative approach

was integrated to maintain continuous alignment with the customer's vision. This

involved splitting the development into iterations, which allowed for regular customer

feedback and facilitated ongoing analysis and improvement. Weekly meetings were

scheduled throughout the development phase to ensure consistent communication and

adaptation to evolving project needs.

5.2 Technologies

The web application uses Spring Boot for backend operations and MySQL as the

database. Angular provides the frontend interface, while OpenAPI is used to efficiently

generate code, including server stubs for API implementation and the creation of Data

Transfer Objects. Additionally, OpenAPI aids in documenting the API. Maven, which

is an open-source, standards-based project management framework that simplifies the

26

building, testing, reporting, and packaging of projects, is utilized to manage package

handling and project organization [21]. The source code is hosted on Atlassian

Bitbucket, provided by adesso.

5.3 Architecture

The application architecture consists of a backend built with Spring, which connects

to a MySQL database for data exchange. Communication between this backend and

the Angular frontend is facilitated by OpenAPI, which generates the necessary

skeletons for API implementations. Figure 11 depicts the design of the application

architecture.

Figure 11 - Application architecture design

An architectural domain design was created to provide a clear overview and guide the

development of the system. Different colors distinguished various stereotypes, including

classes, enums, interfaces, and entities. Each entity is clearly defined with its attributes,

specifying their types and visibility modifiers (public or private). The entities are

supported by Java Persistence API (JPA) Repository Interfaces, which persist the

entities and handle their Object-Relational Mapping. Essential methods for these

interfaces have also been included. The system uses a microservice architecture, which

divides the software into small, independent services. This structure enhances

maintainability and scalability, with each entity handled by its dedicated service.

Relationships between entities are defined by cardinalities, which assist in selecting

appropriate Hibernate annotations in Spring Boot for defining entity relationships.

27

Data Transfer Objects (DTOs) are designed to specify the precise data for

communication of backend and frontend. The domain design was refined following a

consultation with a senior software architect at adesso. Recommendations regarding

the early creation of DTO objects, adherence to naming conventions, and corrections

of type errors were integrated into the design. Figure 12 illustrates a segment of the

complete domain design. The full domain design is available in Appendix B and USB

Content.

Figure 12 - Segment of domain design

28

5.4 Configuration

The application implementation begins by establishing a connection between the

frontend and backend, as illustrated in Figure 11 application architecture design. The

application's structure and dependencies are managed using Maven. Once the structure

is in place, initial configurations are made for both Angular and Spring. For Spring,

this includes setting up Spring Security for authentication and Cross-Origin Resource

Sharing (CORS) and establishing a connection to the MySQL database. Angular

requires minimal initial configuration.

5.5 Best Practices

Several best practices were deployed in the development of the application, which

includes:

1. Secure Authentication: Utilizing Spring Security to ensure a secure

authentication process.

2. Microservice Architecture: Enhancing modularity by creating distinct

services for each entity with low coupling and high cohesion.

3. Data Transfer Optimization: Mapping entities to Data Transfer Objects

(DTOs) to ensure only necessary information is sent to the frontend.

4. Error Handling: Integrating comprehensive error handling during database

access to improve system robustness.

5. Contract-First API Development: This approach was adopted to improve

efficiency in the API development process. Chapter 2.12 details its benefits,

including detailed documentation of APIs, the facilitation of parallel frontend

and backend API development, and saving time. The flexibility of this method

also allows for easy adjustments throughout the development cycle

6. Component Reusability: Designing reusable frontend components to save

development time and maintain consistency across the application. For instance,

a green field component, which signals a successful process, is designed once,

and reused throughout the application, with adjustments made only to the text

as necessary.

29

7. README Guide: The README file accompanying the project provides a

guide that outlines the essential technologies used, setup instructions, and

testing protocols, serving as a manual for future developers to understand and

contribute to the Zahnmobil application.

8. UI Performance Optimization: Angular's OnPush change detection strategy

was implemented to enhance UI responsiveness and performance by manually

managing update trigger. Figure 13 illustrates a simplified example of using

OnPush in a component. The change detection strategy is configured at line 23,

switching from Default to OnPush. This adjustment means any UI updates need

to be triggered manually. Line 28 injects the base class that provides change

detection functionality, enabling the developer to initiate change detection

processes manually. Later in the code, at line 34, a request is made to the

backend to fetch the current user count. Once the data is received and the user

count is set at line 36, the developer uses the injected class to trigger a change

detection at line 37. This instructs Angular to re-evaluate the component state

and update the UI if necessary, reflecting the new user count.

Figure 13 - Simplified example of OnPush usage in the application

5.6 Scheduling Optimization Algorithm

An algorithm has been developed to assist administrators in finding the best location

for operations based on which location has had the most patients and additional

30

services handled in the past. The stakeholder provided the Zahnmobil project's

database detailing operations from the past twelve years. This database, formatted as

an Excel file, includes data on operation locations, dates, patient counts, and additional

services counts. "Additional services" encompass all activities other than operating on

a patient, such as providing recommendations to patients. The initial step involved

cleaning and restructuring the database to facilitate smoother integration into the

application. This process included eliminating irrelevant columns and rows, merging

cells for consistency, and dividing the data into separate files of the last five years.

Prior to that, no additional services were recorded. Following database cleaning, a

parser was developed to transfer the operational data from the Excel file into the

application database. With all the operations now available in the application database,

an aggregation and filtering algorithm was designed, as detailed in the steps below:

1. Map Operation Entities to OperationMapped Classes:

• Each operation's date is mapped to the corresponding day of the week

and month number.

• A value is calculated for each operation by combining the number of

patients with one-tenth of the additional services (this ratio is specified

by the stakeholder).

2. Group OperationMapped Classes by Location:

• Operations are grouped by location using a HashMap, where each key

represents a location, and the value is a list of OperationMapped classes.

3. Collect Admin Input:

• Inputs include the desired date for an operation and a list of locations.

4. Filter Data for each Location:

• The data is filtered to include only entries that match the day of the

week and month specified in the administrator’s desired date input.

5. Calculate Average value for Each Location:

• An average value is calculated from the filtered dataset for each location.

6. Recommend the Location with the Maximum Average Value:

• The location with the maximum average value is recommended as the

optimal choice.

Figure 14 depicts a usage scenario involving an administrator who wants to schedule

an operation on May 15, 2024, but does not know which location to choose from among

Steintor, Kröpcke, or Messe. The administrator wants the operation to yield the highest

31

value, considering the number of patients and the number of additional services

provided. The algorithm would recommend the location expected to have the most

value for the selected date. In this case, the location recommended is Messe.

Figure 14 - Usage scenario for the optimization algorithm

32

Chapter 6

6. Testing and Evaluation

This chapter explores the testing and evaluation of the application developed in this

thesis.

6.1 Testing

Following the development of the applications, the testing phase was initiated to verify

the quality of the application. This phase involved creating automated unit tests to

evaluate the core functionalities of both the backend and frontend. The Spring

framework uses Mockito, a powerful open-source testing framework for Java, to create

mock objects, stub method calls, and verify interactions between objects for unit testing

[3]. Similarly, the Angular framework employs Jasmine, a testing framework for

JavaScript, to implement unit tests [9]. Additionally, automated end-to-end tests were

conducted to ensure that the system functions correctly as a whole. The most critical

usage scenarios within the applications were tested using Cypress, an end-to-end test

automation framework built and engineered for modern web applications [14].

Following this, exploratory testing was performed throughout the entire application to

identify and document current issues. For each section of the application, a charter was

documented detailing the objectives, scope, and duration of the exploratory testing.

Each identified issue was prioritized based on its importance and impact on the

system's functionality. Due to time constraints, only the most critical problems were

addressed, though remaining issues will be resolved prior to deploying the application

in production mode. The complete exploratory testing documentation and a video

showcasing the automated end-to-end tests are available in the USB Content.

6.2 Evaluation

This chapter describes the conduct of a study aimed at evaluating the application

developed as part of this thesis.

33

6.2.1 Study design

The study is designed to evaluate the usability and user experience of the application,

with a primary focus on its usability aspects, as it was the central goal of the

application. It also aims to collect suggestions for improvements to enhance the

application further. A semi-structured interview was designed to gather feedback,

aiming to keep the duration between 25 to 30 minutes to respect participants' time and

avoid overburdening them. The interview begins with an introduction to the study's

objectives, incorporating a brief warm-up conversation to familiarize participants with

the study's conduct and purpose.

Participants then engage in practical tasks that simulate real-life interactions with the

application, differentiated for normal users and administrators. For instance, A typical

user might search for available operations and enroll in it, while an administrator could

set up a location for an operation. The tasks are designed to be comprehensive and

cover core functionalities of the application for both users and administrators. Upon

completing these tasks, participants fill out a survey developed using the Goal-

Question-Metric (GQM) approach. Furthermore, for a more structured approach to

conducting the study, a study guide was created detailing the structure of the study,

the GQM framework, and the survey questions (Full Survey Guide in USB Content).

Table 1-3 depicts the formulation of the goals according to the template in work [24].

Analyze The responses from the survey

for the purpose of Evaluating the web applications usability

with respect to Efficiency, effectiveness and ease of use

point of view Application’s end-users

in the context of Everyday tasks within the Zahnmobil application

Table 1 - Usability goal definition

Analyze The responses from the survey

for the purpose of Evaluating the web applications user experience

with respect to Aesthetic, navigational clarity and user hurdles
point of view Application’s end-users

in the context of Everyday tasks within the Zahnmobil application

Table 2 - User experience goal definition

Analyze The responses from the survey

for the purpose of
Identifying potential new features and

improvements

with respect to user satisfaction

point of view Application’s end-users

34

in the context of Everyday tasks within the Zahnmobil application

Table 3 - Feature discovery goal definition

Subsequently, questions were designed to support the goals, particularly focusing on

the application's usability. The Standard Usability Scale (SUS) was employed to

evaluate the usability of the application, providing reliable, easy-to-analyze results that

facilitate comparisons with similar products [8]. The survey also included questions

about the application's core features for both users and administrators to specifically

assess their usability. To avoid overburdening participants, only three questions were

included addressing user experience aspects such as design, navigation intuitiveness,

and challenges encountered during application use. An open-ended question was also

added to gather suggestions for desired features or improvements. The survey used a

Likert scale ranging from 1 to 5, where 1 indicates 'strongly disagree' and 5 'strongly

agree'. A 5-point scale was preferred over a 7-point scale to simplify participant

decision-making. A neutral option, rated as 3, allowed participants to express neither

a strongly positive nor negative view on specific application aspects. Finally, with the

goals and questions formulated, the metrics for assessing the results of the questions

were finalized. For the SUS-related questions, the SUS score for each participant was

computed, along with the average SUS score across all participants, to assess overall

usability. For other questions targeting specific usability features and user experience,

the median score was analyzed, and the percentage of agreement or disagreement

among responses was calculated. For the open-ended question regarding suggested

features, the frequency of specific feature requests was quantified to identify prominent

user demands. Furthermore, separate online survey forms were created for

administrators and users, each tailored to their specific interactions with the

application. These surveys were accompanied by a consent form that outlines the

purpose of the study. It assures participants of confidentiality and voluntary

participation. By checking a box, participants give their informed consent,

acknowledging they understand the survey's details (Full survey in USB Content).

6.2.2 Participants

The recruitment process for the study was initiated by the stakeholder of Zahnmobil,

who invited all members to partake in the interview. Interested individuals were given

the choice to conduct their interviews either online or on-site, with a preference stated

for on-site interviews to benefit from smoother procedures and direct communication.

Interviews were scheduled based on each participant's preference.

35

6.2.3 Study Results

A total of 12 participants were interviewed, consisting of 7 dentists, 3 drivers and 2

assistants. Among them, 9 were regular users and 3 were administrators. For the 9

regular users, 3 interviews were conducted online, and all other interviews took place

at locations preferred by the participants, either at their homes or in public spaces.

Figure 15 illustrates the demographics: there were 8 males and 4 females, with an

average age of 60 years. The ages ranged from 29 to 70.

Figure 15 - Participant demographic charts

The SUS-Score for each participant was calculated and analyzed based on the

methodology outlined in work [8]. Every participant received an A+ grade, which is

the highest possible. The average SUS-Score was 96.67, with 3 users and 1

administrator giving the application a perfect score of 100. The lowest score recorded

was 87.5, which still qualifies as an A+ grade.

36

Figure 16 - SUS Score for each participant and the overall average

In analyzing usability-related questions about specific features, such as searching for

operations in the calendar, understanding emails from the system, and navigating the

application, the responses from participants reflect a uniformly high level of satisfaction

with the application’s functionality. Positively phrased questions about the features

received a median score of 5, signaling strong agreement with the application's

effectiveness. Conversely, negatively formulated questions resulted in a median score of

1, showing strong disagreement with negative statements about the application.

The responses from the administrators regarding administrator-specific features also

indicated uniformly high satisfaction levels, except for one question concerning the

usefulness of the scheduling optimization algorithm, as discussed in Chapter 5.6. Here,

two administrators noted that due to the fixed nature of recurring operations at the

same locations, the algorithm's utility was limited. However, one administrator believed

it could become beneficial as the organization grows.

Another point of discussion was the attractiveness of the user interface design. While

the majority (67%) strongly agreed that the UI design was attractive, there was a

notable dissent, with one participant neutral, two disagreeing, and one strongly

disagreeing, totaling 25% in disagreement.

Table 4 summarizes the feedback and observations collected from the survey. The first

column lists how many participants mentioned each issue, and the second column

details the specific recommendations or observations.

#Participants Recommendations and observations

5 Bigger text size

4 Responsive design

37

3
Confusion between the actions and states of the 'Eintragen' and

'Austragen' buttons

3
Clicking the buttons more than once due to not recognizing the

successful feedback that appeared

3 Integration of operation in external calendars

1
A reminder E-Mail from system for reminding users of signed up

operations

1 Sorting of operation locations alphabetically
Table 4 - Recommendations and Observations gathered from the survey

• The most common issue, reported by five participants (41.7%), was difficulty

reading the application's text due to its small size.

• Four participants (33.3%) inquired about the application’s appearance on mobile

phones, noting that they often use the app on their devices.

• Another common confusion involved the button used for enrolling in operations,

with three participants (25%) unsure whether it indicated an action or a state.

Two participants later clarified that their confusion stemmed from the button's

text size.

• Three participants (25%) did not immediately recognize the feedback after

confirming an action, leading to errors such as adding the same operation twice

or mistakenly enrolling and deregistering from an operation.

• Three participants (25%) appreciated the option to add operations to an

external calendar, finding it helpful for tracking their enrolled operations.

• One participant (8.3%) suggested sending a reminder email one day before the

operation to help users keep track of their schedules.

• One administrator out of the 3 administrator (33.3%) suggested sorting

operation locations alphabetically to improve searchability.

Two recommendations from participants—responsive design and the ability to

integrate operations into external calendars—were initially identified as requirements

by stakeholders. However, due to time constraints, these features were listed as possible

compromises as mentioned in Chapter 4.3.5 and were not implemented in this thesis.

38

6.2.4 Threats to Validity and Challenges

To mitigate external validity concerns, the study specifically targeted end-users who

were already familiar with the current Zahnmobil application. This focus aimed to

ensure that feedback was relevant and grounded in actual user experiences. However,

this approach may also limit the generalizability of the results, as new users completely

unfamiliar with the current Zahnmobil applications might have different responses and

insights. Many user functionalities of the current Zahnmobil application were integrated

to the developed application with improvements, making it easier for users familiar

with the old system to adapt and find it less complex. The new features and changes

primarily catered to administrative functions, and since 9 of the 12 survey participants

were regular users, this may have impacted the results.

For internal validity, consistency was maintained through a semi-structured interview

format, where each participant received the same introduction and completed similar

tasks tailored to their role as a user or administrator. During the practical task section

of the interview, minimal assistance was provided to replicate a real-life usage scenario

and observe any difficulties encountered, ensuring feedback reflected typical application

use. Despite these measures, several issues could still impact the study's internal

validity:

1. Remote Task Execution: Initially, the plan for the online survey allowed the

three participants who wished to conduct the survey online to remotely control

the shared screen and perform the tasks. However, due to the participants'

varying levels of IT expertise, this approach was modified. Instead, the

application and tasks were demonstrated in detail, and participants were

periodically asked where they would click, effectively simulating a usage

scenario. This change could influence participants' feedback, as they did not

engage directly with the application to perform the tasks, potentially affecting

the internal validity of the study.

2. Question Format: The survey's use of alternating positive and negative

questions confused some participants, leading to occasional incorrect responses

despite clarifications provided during the interview.

39

Furthermore, to ensure strong construct validity, the study employed several key

strategies:

1. Standard Usability Scale (SUS): The SUS was used to evaluate the

application's usability. This widely recognized and validated tool is known for

its excellent reliability, enhancing the accuracy of the usability assessment.

2. Task-Based Evaluation: Participants engaged in practical tasks simulating

real-life interactions with the application. Tasks were tailored for both regular

users and administrators, ensuring that the evaluation was relevant and

comprehensive .

3. GQM Approach: The survey was developed using the Goal-Question-Metric

(GQM) approach, providing a structured and systematic framework. This

approach ensured that survey questions were directly linked to the study's goals,

thereby improving construct validity by collecting relevant data.

6.2.5 Summarizing Results

The study achieved an impressive average SUS score of 96.67, indicating high

satisfaction among the 12 participants with the application's usability. This suggests

that the Zahnmobil Project could effectively utilize this application for their purposes

[8]. However, the results also identified areas for improvement, such as increasing text

size and preventing multiple buttons clicks by users. Additionally, the study highlighted

the most desired features among the participants, which include responsive design,

integration with external calendars, and email reminders for scheduled operations.

Despite these positives, 25% of participants found the application's design unattractive.

This suggests that there is room for aesthetic enhancement. Moreover, the feedback

revealed that the optimization algorithm, which selects locations with the highest

number of patients based on operation history, does not align with Zahnmobil project's

goal in choosing locations. However, according to the stakeholder of Zahnmobil, as

operations expand, this algorithm might become more applicable.

40

Chapter 7

7. Conclusion

This thesis has effectively navigated the complexities involved in developing a software

application tailored for the Zahnmobil Project. The primary objective was to create a

user-friendly, efficient software system that enhances operational efficiency and

facilitates the management of volunteer-driven dental services. throughout this project,

a comprehensive analysis of requirements was conducted to ensure that the developed

software met the specific needs of the Zahnmobil Project. The architectural design

aimed at creating a robust and maintainable framework was implemented successfully.

The implementation phase adhered closely to several best practices in software

development, ensuring the system was not only functional but also scalable and secure.

A notable strategy was the adoption of a Contract-First API development approach

using OpenAPI, which facilitated parallel development streams, enhanced

maintainability, and significantly reduced development time. The testing phase

highlighted the application’s reliability and performance through systematic automated

and exploratory testing. Subsequently, the evaluation phase, conducted through user

interviews, provided critical insights into the application's usability, confirming high

satisfaction levels among users as evidenced by the average SUS score of 96.67 among

12 participants. Feedback from this phase also pinpointed areas for future

enhancement. In conclusion, this thesis not only achieved its goal of improving

volunteer coordination and operational efficiency but also laid a solid foundation for

future technological enhancements within the Zahnmobil Project.

41

Chapter 8

8. Future Development

This chapter explores the potential directions for the future development of the

application.

8.1 AI Integration

In the future development of this project, one innovative idea is incorporating an

Artificial Intelligence Scheduler to optimize operation scheduling. This AI Scheduler

would align operations with user availability. Administrators would specify the dates

for operations scheduled in the upcoming month, while users would input their available

time slots for that same period. The AI Scheduler would then match users to operations,

ensuring each operation has a dentist, driver, and assistant. This setup is a classic

example of a Constraint Satisfaction Problem (CSP), which seeks solutions that satisfy

a specific set of constraints [5]. In this context, the variables represent the roles for

each operation, with the domain of these variables being the entire set of users in the

system.

Key constraints for this system include:

1. Each operation requires one and only one dentist, driver, and assistant.

2. The scheduling of operations must align with user availability.

3. Users cannot be assigned multiple roles simultaneously.

4. Users cannot be scheduled for overlapping operations.

Additionally, the CSP framework allows for optimizing initial solutions to achieve the

most effective solution. For example, an objective function could be introduced to

distribute the workload evenly among users, preventing burnout by avoiding over-

scheduling users in too many operations. Additionally, another objective function could

aim to minimize staff changes. By keeping staff assignments consistent, especially in

operations that recur at the same locations and times, we can enhance comfort and

potentially improve performance. To effectively implement the AI Scheduler, the

system's database should be updated to save user availability. Additionally, the user

42

interface for inputting user availability should be designed to be user-friendly for those

with limited IT skills. A calendar component would simplify the process, enabling users

to easily indicate their availability by selecting days and specifying available times.

However, challenges such as user adoption and flexibility in handling unforeseen

changes need careful consideration. Encouraging regular updates of user availability

and accommodating emergencies are critical for the system's effectiveness.

Another proposal for improving the application is introducing a recommendation

system to enhance the user experience. This system would offer personalized operation

recommendations based on users’ historical interactions with the application, diverging

from the current system that only suggests upcoming operations on the homepage. A

machine learning technique utilizing collaborative item-based filtering would be

appropriate for this enhancement. The backend already stores all the relevant

information of operations. For the technical implementation, the Apache Mahout

framework could be utilized. Mahout supports a collaborative filtering approach using

an ItemBasedRecommender and various measures to compute item similarities, such

as Pearson correlation, cosine similarity, Jaccard coefficient, and log-likelihood ratio.

In our scenario, the items are the operations, and similarities can be assessed based on

aspects including day of the week, month, time frame of deployment, and operation

location. These similarities can be precomputed and stored, enabling efficient data

retrieval from a relational database, and facilitating scalable and effective machine

learning deployment [18].

8.2 Gamification

To improve operations and enable scalability for the Zahnmobil Project, a motivational

strategy involving gamification could be introduced. This approach would include a

point system where employees earn points for completing operations, with additional

points awarded for consistent participation, such as weekly or monthly streaks. A

leaderboard could display the top five employees in each role, showcasing those with

the highest points (see Figure 18 for a mockup). Employees who prefer privacy can

choose to hide their standings on the leaderboard. Additionally, a personalized

homepage could feature a leveling system that reflects the points employees have

accumulated. Although this concept received positive feedback from stakeholders, it

was not implemented in the bachelor thesis due to time constraints.

43

Figure 17 - Leaderboard page mockup

8.3 Roadmap

The primary goal of the roadmap is to prepare the application for deployment,

prioritizing the following key steps:

1. Implementing Compromised Requirements: Implementing the

compromised Requirements such as Responsive Design and Export

functionalities.

2. Incorporating User Feedback: Implement changes based on survey result

(see Chapter 6.2.5), such as increasing text size.

3. Bug Fixes: Address issues identified during exploratory testing.

44

4. Enhanced Automated Testing: Develop comprehensive automated tests for

all features.

5. Integration and Server Deployment: The final steps involve deploying the

application on a server to provide user access and integrating the application

with the Zahnmobil website to ensure that operations created internally are

visible externally.

45

References

[1] A. Haraty, R. and Hu, G. 2018. Software process models: a review and analysis.

IJET 7, 2.29, 325.

[2] Abu, Z., Jasmisham, N. H., and Mangshor, N. N. A. 2022. ONLINE

STUDENTS’APPOINTMENT SYSTEM FOR UNIVERSITY

ADMINISTRATION. Journal of Islamic 7, 46.

[3] Acharya, S. 2014. Mastering unit testing using Mockito and JUnit. Packt

Publishing Ltd.

[4] Balaji, S. and Murugaiyan, M. S. 2012. Waterfall vs. V-Model vs. Agile: A

comparative study on SDLC. International Journal of Information Technology

and Business Management 2, 1, 26–30.

[5] Brailsford, S. C., Potts, C. N., and Smith, B. M. 1999. Constraint satisfaction

problems: Algorithms and applications. European journal of operational

research 119, 3, 557–581.

[6] Damij, N. and Damij, T. 2024. An Approach to Optimizing Kanban Board

Workflow and Shortening the Project Management Plan. IEEE Trans. Eng.

Manage., 1–8.

[7] Guzman, M. R. Q. de, Ordoñez, J. L. N., Somocierra, R. O., and Fuentes, G. S.

2021. Online Scheduling System for Doctors and Patients in a Hospital. In

Proceedings of the International Conference on Industrial Engineering and

Operations Management, Monterrey, Mexico.

[8] Klug, B. 2017. An overview of the system usability scale in library website and

system usability testing. Weave: Journal of Library User Experience 1, 6.

[9] Kozlowski, P. and Darwin, P. B. 2013. Mastering Web Application Development

with AngularJS. Packt Pub.

[10] Lauretis, L. de. 2019. From Monolithic Architecture to Microservices

Architecture. In 2019 IEEE International Symposium on Software Reliability

Engineering Workshops (ISSREW). IEEE. DOI=10.1109/issrew.2019.00050.

[11] MALL, R. 2018. Fundamentals of software engineering. Eastern Economy

Edition. PHI Learning Private Limited, Delhi.

[12] McKenzie Tucci. 2024. Code-First vs. Design-First: Eliminate Friction with API

Exploration. https://swagger.io/blog/code-first-vs-design-first-api/. Accessed 10

May 2024.

[13] Muhammad Fazril Bin Mohd Amin. 2012. Volunteer Management System.

Bachelor of Technology (Hons), Universiti Teknologi PETRONAS.

46

[14] Mwaura, W. 2021. End-to-End Web Testing with Cypress: Explore techniques

for automated frontend web testing with Cypress and JavaScript. Packt

Publishing Ltd.

[15] Ponelat, J. S., Tam, T., and Rosenstock, L. 2022. Designing APIs with Swagger

and OpenAPI. Manning Publications, Shelter Island.

[16] Rupp, C. 2004. Requirements templates-the blueprint of your requirement.

Requirements Engineering 366.

[17] Rupp, C. and SOPHISTen, d. 2020. Requirements-Engineering und -

Management. Carl Hanser Verlag GmbH & Co. KG, München.

[18] Schelter, S. and Owen, S. 2012. Collaborative filtering with apache mahout.

Proc. of ACM RecSys challenge.

[19] Schönböck, J., Raab, M., Altmann, J., Kapsammer, E., Kusel, A., Pröll, B.,

Retschitzegger, W., and Schwinger, W. 2016. A survey on volunteer

management systems. In 2016 49th Hawaii International Conference on System

Sciences (HICSS), 767–776.

[20] Seshadri, S. 2018. Angular: Up and running: Learning angular, step by step.

O’Reilly Media, Inc.

[21] Varanasi, B. 2019. Introducing Maven: A Build Tool for Today’s Java

Developers. Apress.

[22] Walls, C. 2022. Spring in action. Manning, Shelter Island, NY.

[23] Webb, P., Syer, D., Long, J., Nicoll, S., Winch, R., Wilkinson, A., Overdijk, M.,

Dupuis, C., and Deleuze, S. 2013. Spring boot reference guide. Part IV. Spring

Boot features 24.

[24] Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B., and Wesslén,

A. 2012. Experimentation in software engineering. Springer Science & Business

Media.

47

Appendix A - Specification

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

Appendix B - Domain Design

70

71

Appendix C - Developed Application

Screenshots

72

73

74

75

76

USB Content

Interview Protocol: Protocol developed to guide the interview process in Chapter

4.2.

1) Interview/Interview-Protocol.pdf

Specification: Developed Specification in Chapter 4.3.

1) Specification/Specification.pdf

Architecture Design: Domain and Application Design developed in Chapter 5.3.

1) Architecture/Domain-design.pdf

2) Architecture/Application-design.pdf

Testing: Exploratory testing documentation and a video showcasing the end-to-end

test conducted by Cypress from Chapter 6.1.

1) Testing/Exploratory-Testing.pdf

2) Testing/End-To-End Testing.mp4

Survey: The survey guide and the survey for both the user and administrator,

which were discussed in Chapter 6.2.1.

1) Survey/Survey Guide.pdf

2) Survey/Survey for User.pdf

3) Survey/Survey for Admin.pdf

Source Code:

1) zahnmobil

77

