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i
Abstract

Software systems are an essential part of our everyday life. The implementa-
tion of artificial intelligence and machine learning algorithms has made apps
increasingly more complex. This leads to users having to deal with unclear
or unexpected outcomes when interacting with a software.

Explainability is an emerging quality aspect in software engineering. It can
be defined as the ability of app to explain itself. Explainability needs can
be often found in app reviews, where users frequently express the need for
explanations about unexpected system behavior, unclear features, or specific
interactions that do not align with their expectations. Addressing these
needs can improve user experience and increase users trust in the software
system. However, extracting and prioritizing explainability needs from large
and diverse review pools remains challenging.

This thesis presents a structured approach for categorizing and prioritizing
explainability needs in app reviews by developing a comprehensive set of
criteria. This criteria list is designed to support better organization and
prioritization of user feedback in app reviews. The criteria in this list come
from app and review metadata, insights gathered through natural language
processing methods from the reviews themselves, categorisation methods for
the issue that are described in the review and other external factors. These
criteria also went through stages of validation with explainability experts
before reaching their final version.

To evaluate the relevance and practical application of these criteria, six
requirement engineers were interviewed. They provided their perspectives
on prioritizing criteria across different use cases. Furthermore, they also
provided valuable insights for further expanding the criteria list and the use
cases in which they can be used. Finally, they also confirmed, based on their
experience, the potential that the implementation of this criteria list can
have in a practical context.
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Kurzfassung

Softwaresysteme sind ein wesentlicher Bestandteil unseres téglichen Lebens.
Durch den FEinsatz von Kiinstlicher Intelligenz und Algorithmen des
maschinellen Lernens sind Apps immer komplexer geworden. Dies fiihrt
dazu, dass die Nutzer bei der Interaktion mit einer Software mit unklaren
oder unerwarteten Ergebnissen konfrontiert werden.

Erklarbarkeit ist ein neuer Qualitdtsaspekt in der Softwareentwicklung. Sie
kann definiert werden als die Fahigkeit einer App, sich selbst zu erklaren.
Erklarungsbedarf findet sich hdufig in App- Reviews, in denen Nutzer haufig
Erklarungen zu unerwartetem Systemverhalten, unklaren Funktionen oder
bestimmten Interaktionen, die nicht ihren Erwartungen entsprechen, fordern.
Die Behebung dieses Bedarfs kann die Benutzererfahrung verbessern und das
Vertrauen der Benutzer in das Softwaresystem stiarken. Die Erkennung und
Priorisierung von Erklarungsbedarf aus groften und vielfaltigen Review-Pools
bleibt jedoch eine Herausforderung.

In dieser Arbeit wird ein strukturierter Ansatz zur Kategorisierung und
Priorisierung von Erkldrungsbedarf in App-Reviews vorgestellt, indem eine
umfassende Liste von Kriterien entwickelt wird. Diese Kriterienliste wurde
entwickelt, um eine bessere Organisation und Priorisierung von Nutzer-
feedback in App-Reviews zu ermoéglichen. Die Kriterien in dieser Liste
stammen aus App- und Bewertungs-Metadaten, aus Erkenntnissen, die durch
Methoden der natiirlichen Sprachverarbeitung aus den Bewertungen selbst
gewonnen wurden, aus Kategorisierungsmethoden fiir das in der Bewertung
beschriebene Problem und aus anderen externen Faktoren. Diese Kriterien
wurden auch von Erklarungsexperten validiert, bevor sie ihre endgiiltige
Form erreichten.

Um die Relevanz und praktische Anwendung dieser Kriterien zu bew-
erten, wurden sechs Anforderungsanalysten befragt. Sie gaben ihre Ein-
schétzung zur Priorisierung der Kriterien fiir verschiedene Anwendungsfille
ab. Dariiber hinaus lieferten sie wertvolle Erkenntnisse fiir die kiinftige
Erweiterung der Kriterienliste. Schlieflich bestétigten sie auf der Grundlage
ihrer Erfahrungen auch das Potenzial, das die Umsetzung dieser Kriterien-
liste in der Praxis haben kann.
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Chapter 1

Introduction

Software systems have become an integral part of our daily lives, influencing
a wide range of decisions that affect us in various ways. Some examples of
these decisions range from navigation apps, like Google Maps, that choose the
fastest routes to help us avoid traffic, to financial and healthcare applications
with even more profound implications for our well-being. However, due to
the increasing complexity of software systems [20], it has become difficult to
understand the rationale behind certain outputs produced by these systems
[19].

This can lead to the usage of explanations in applications, which can give an
insight into the ways a system works and are seen as an option to mitigate
the lack of transparency in a software system [I4]. They may be used to
make the system more transparent and to allow the user to build up more
trust in it [26]. These explanations can answer different questions such as
"Why did the system produce this output?" or "Why is this output different
than usual?". This type of explanation is often implemented in recommender
systems [11].

Explainability is generally defined as the ability of a software to be explained
[6]. It is an emerging quality aspect evoking new research in the field of
requirements engineering [6]. Many see explainability as a suitable means to
foster stakeholder trust [22] [5]. However, when implementing explanations
in applications, it should be taken in consideration that explainability needs
vary depending on the software type [I5]. Research has also shown that
explainability has a clear "Double-Edged-Sword" effect [6]: while it can help
in adding transparency and facilitating the understanding of a system, it
may also result in an opposite effect, if incorrect design choices are taken
during requirement analysis [6].
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Applications Stores, such as Apple’s App Storeﬂ and Google’s Play StoreEl7
offer the possibility for users to provide feedback on apps they have
downloaded. Research by Pagano and Maalej [28] highlighted that app
reviews contain valuable requirements engineering related information, as
they represent rich and readily available textual data that provides insights
into thousands of user experiences. This feedback is valued by developers,
since it provides them with important information to improve software
quality and identify possible missing features [27]. Research has also shown
that the involvement of users and their continuous feedback are major success
factors for software projects [16]. A significant amount of the reviews include
requirements-related information such as bugs or issues [28|, summary of the
user experience with certain features [17], requests for enhancements [I§],
and even ideas for new features [3], [28]. Finally, research has also shown
that, although relatively sparse, explanation needs in app reviews are also
valuable and contain rich information [34]. This, combined with the fact
that app stores can serve as a communication channel between users and
developers [28], makes app reviews an ideal source to capture and study
users explanation needs.

1.1 Problem

Previous research, including work by Droste et al. [15] and Unterbusch
et al. [34], have already made efforts to categorise explainability by
creating taxonomies that classify these needs into different categories. These
taxonomies provide a structured overview of the types of explanation needs
that users might have. However, both these taxonomies, do not dive very
deeply into which is the specific aspect that is being referenced by the
review or the context that causes the explainability need. As a result, these
taxonomies capture only a single dimension of analysis, focusing primarily
on the high-level classification of explainability needs without accounting for
other critical factors that might affect the categorisation of a review.

When considering the use case of classifying and prioritising explainability
needs, relying solely on a single categorical classification might not be
enough. This is because explainability needs can vary significantly in
complexity, urgency, and relevance, depending on multiple contextual
factors. Beyond simply categorizing the need for an explanation, it is
essential to assess additional factors that can provide a more broad view
of the user’s issue. For example, sentiment analysis can reveal the emotional
tone of a review, offering clues about whether a user is frustrated, confused,
or simply requesting clarification. Similarly, the frequency with which a
particular issue is reported may indicate a more systemic problem that affects

Yhttps: / /www.apple.com/de/app-store/
https:/ /play.google.com /store
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a broader user base, thereby needing a higher prioritization for addressing
that need. The app version used by the reviewer is also a critical factor, as
certain issues may be specific to particular updates, devices, or operating
systems, helping developers identify and address version-specific concerns
efficiently. By considering all these diverse criteria, the explanation needs
can be categorised more accurately and the response to each need can be
prioritised and delegated more efficiently.

1.2 Solution approach

This thesis tries to tackle the aforementioned problems by defining a list of
different criteria that can be related to explainability needs. This criteria will
then be validated for different use cases through interviews with requirements
engineering experts. Furthermore in this thesis, several new criteria will be
created through a pre-study in which explainability needs from an app-review
dataset will be labeled and categorised. The objective here is to categorise
explainability needs as detailed and precise as possible. These new criteria
will be added to other criteria that will be gathered from previous research,
review metadata and other factors which will be discussed later in this thesis.
Lastly, after these criteria will be validated, a subset of the original review
dataset will be prepared and labeled with the criteria that were deemed most
valuable in the interviews with the experts.

1.3 Objective of thesis

The objective of this thesis is to identify and validate criteria that can help
in categorising and prioritise explanation needs in app reviews. To achieve
this, the thesis will integrate existing criteria from prior research, app review
metadata and a set of new categories which will be created by labeling an
existing dataset of app reviews. In order to validate the found criteria,
interviews with industry experts will take place. They will be asked to
prioritise the found criteria for different use cases. These use cases include
the manual and automatic categorisation and prioritisation of explanation
needs and also using these criteria in eliciting requirements for explainability
in apps. Furthermore, the experts will be asked to expand this list with other
criteria if possible and also if they think that these criteria can be used in
even more use cases than the ones already mentioned. Lastly, following
research questions will be answered:

RQ1 What criteria can support the categorization and prioritization of
explanation needs in app reviews?

RQ2 Which of these criteria are prioritized highest by requirements engi-
neers?
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1.4 Structure of thesis

This thesis is structured as follows: In Chapter [2] the fundamentals of app
reviews and explainability will be discussed. In Chapter [3] works related to
categorising explainability and app reviews will be considered. In Chapter [4]
the steps taken in the development of the criteria list related to explainability
needs in app reviews will be presented. The evaluation part of this thesis
will be covered in Chapter [5| where the interview in which the criteria have
been evaluated will be discussed and the results will be presented. Chapter
[6] covers the discussion part of the thesis where the results will be interpreted
and the research questions will be answered. The conclusion of this thesis
will be discussed in Chapter [7}



Chapter 2

Foundations

2.1 Explainability and explanation needs

This section will provide an overview of key concepts related to explainability
and explanation needs, establishing a clear understanding of these terms in
the context of software systems. It will first define explainability, exploring
its role as a quality attribute that enhances system transparency and user
trust. This is followed by the definition of the concept of explanation needs,
together with an example of categorisation of it.

2.1.1 Explainability

Shortly, explainability can be defined as the ability of a software system to
be explained [6]. The ability to provide explanations, a natural ability of
humans, is therefore considered an important capability of software systems.
As such, explainability is now accepted as a critical quality attribute [6]
and represents an emerging topic in the field of Requirements Engineering
[2]. Considering this, Chazette et al. [5] define explainable systems more
formally as follows:

Definition: (Explainable systems) A system S is explainable with
respect to an aspect X of S relative to an addressee A in context C if
and only if there is an entity E (the explainer) who, by giving a corpus
of information I (the explanation of X), enables A to understand X of S
in C.

The following example can make this definition more practical: A smart-
phone app (system S) provides health-tracking features. The aspect X of
S that needs to be explained is "how the app calculates daily calorie intake".

)
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The addressee A would be the app user. The context C is the the user
wanting to understand how these calculations are made in order to make
informed dietary choices. Furthermore, the entity E (the explainer) is the
app documentation or a customer support representative. The corpus of
information I (explanation) are the details regarding the algorithm.

According to the definition, the app (S) is explainable with respect to calorie
calculation (X) to the user (A) in the context of making dietary decisions
(C) if and only if the documentation or support team (E) provides sufficient
information (I) for the user to understand how calorie intake is calculated
within this context.

Currently, research on explainability is often focusing on the field of Al
[6], which why the term Ezplainable Artificial Intelligence (XAI) has gained
prominence. XAI methods focus on explaining the underlying model, more
precisely, the internal operations to justify decisions made [10]. These models
are made explainable to enable the user to build more trust in the system
[12]. For example, the explainability technique LIME tries to explain the
predictions of any classifier in an interpretable and faithful manner [30].

As mentioned in Chapter explainability has a "Double-Edged-Sword"
effect [6]. While they may have a positive impact on some non-functional
requirements that affect transparency, they must be carefully designed so
that they do not have the opposite effect on software quality [0].

Kohl et al.[T9] and Chazette et al. [6] have emphasized the significance of
identifying users’ specific needs for explanations and providing customized
explanations correspondingly on their researches. Indeed, in cases where
users do not require explanations, ensuring explainability may not be
necessary [6], since implementing explanation can increase development costs

I5]-

2.1.2 Explanation needs

Unterbusch et al. [34] define an Explanation Need as a knowledge gap that
a user intends to close through an app review. To consider a review as an
Ezxplanation Need, the user must explicitly raise a question or express a need
for an explanation. Following the formatting of Chazette et al.’s definition
of explainability [5], they formally define Explanation Needs as:

Definition: (Explanation Needs) An addressee A has incomplete
knowledge about an aspect X of system S in context C and requests
a corpus of information I provided by an entity E that allows A to
understand X of S in C.
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Unterbusch et al. [34] provided an example of categorisation of explanation
needs in app reviews. To do this, they created a taxonomy and divided
explanation needs firstly into two main categories: Primary Concerns
and Secondary Concerns. Each of these categories was than divided into
subcategories. Primary concerns included the subcategories: Training,
Interaction and Business. Secondary concerns included Dissatisfaction and
Errata. The full representation of this taxonomy is displayed in Figure [2.2]

2.2 App reviews

This section will discuss app reviews and their importance in software
engineering. Furthermore, a gold-standard dataset that has been used in this
thesis which includes 4500 reviews labeled with their respective explanation
needs, will be presented.

2.2.1 User feedback through app reviews

Application distribution platforms, also known as just "app stores", such as
Google Play andApp Store from Apple allow users to search and download
their favorite apps in their devices. As of August 2024, Android users were
able to choose between 2.3 million apps, making Google Play the app store
with the biggest number of available apps [4]. The Apple App Store was
the second-largest app store with roughly two million available apps for
i0OS. Whereas the exact number of apps may fluctuate as Apple and Google
regularly remove low-quality content from their app stores, the number of
apps has been increasing over the years [4]. Apps can be downloaded for free
or they might require a payment before downloading.

These app stores also offer the users the possibility to give feedback for the
apps they have downloaded. This can be done by writing a review or giving
a star rating for the apps. This feedback is public and is also available
to the developers. This kind of feedback is interesting from the software
and requirements engineering perspective, because it allows for a user-driven
quality assessment [28§].

Unlike structured interviews or online surveys, where participants respond
to specific prompts or questions, app reviews are spontaneously written
by users in an open-ended format. This unstructured nature allows users
to express their thoughts, opinions, and experiences without constraints,
making their feedback more authentic and reflective of their genuine
concerns. Since app reviews are written voluntarily, users are typically driven
by personal motivations, such as sharing their experiences, highlighting
problems they encountered, or suggesting ways to improve the app’s features
and functionality. Maalej and Nabil [24] classified app reviews into 4 main
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categories in their research: bug reports, feature requests, user experiences
and ratings.

2.2.2 Gold-Standard dataset

Kupczyk created in his master thesis [13] a dataset of reviews [25] that
contain explainability needs. To do this, he gathered 90,000 reviews which
served as filter basis. Afterwards, filters were used to filter the dataset for
explicit and implicit explanation needs. Of the original 90,000 reviews, 1,500
reviews containing potential implicit and 1500 reviews with potential explicit
explanatory needs were filtered out [13]. In addition, 1500 reviews for which
none of the filters applied were initially considered as reviews with no need
for explanation. Finally, the remaining 4500 reviews were manually labeled
again to assure their correctness of the filters [13].

This dataset served as the foundation for evaluating explanation needs in
apps throughout this thesis. It was utilized to label the identified explanation
needs using newly defined categories, which then served to create new criteria
with which explainability needs can be identified and prioritised.

2.3 Criteria and Taxonomy

This section will define what a criterion in the context of app reviews is and
also present the importance of using taxonomies when categorising elements
in a software engineering context.

2.3.1 Criteria

In the context of app reviews, a criterion in this thesis is defined as a specific
element or attribute that can be extracted or inferred from the review that
returns a piece of information about the review or the explanation need
expressed in it. These criteria can include direct information, such as the app
name, genre, or username, as well as meta-information, like the sentiment
of the user writing the app review, affected app aspects, or the discussed
system behavior. The latter type of criteria may be identified through human
labeling or automatically via machine learning algorithms. The purpose of
these criteria is to systematically categorize and analyze the content of the
reviews in order to detect explainability needs.

Each of these criteria can have a different contribution when classifying and
prioritising an app review. Some criteria can provide information regarding
the app itself that the user has used, like the name or version of the app.
Other criteria like the sentiment of the review can be used to prioritise a
review. For example, if the sentiment of the review is very negative, than
maybe this review should be prioritised higher than another in which the
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sentiment is rather neutral, since the problem discussed here has deeply
affected the user. Lastly, other criteria can offer an insight into which aspect
of the app is being discussed in this review. These criteria can allow a better
categorisation and prioritisation of the tasks that arise during the evaluation
of app reviews and consequently a more efficient delegation of them.

2.3.2 Taxonomies

The Cambridge dictionary E| defines taxonomy as “a system for naming
and organizing things, especially plants and animals, into groups that
share similar qualities”. Nevertheless, taxonomies are also used in software
engineering [35]. Their usage offers different advantages. Since a taxonomy
is mainly defined as a classification method [35], it can also help in the
following areas in which a classification is useful. For example:

e It can provide a better understanding of the relationships between the
objects of a knowledge field [36]

e It can support the decision making process [36]
e It can help in identifying gaps in a knowledge field [36] .

Hierarchical taxonomies consist of one top class with several sub-classes
which can also have further sub-classes. A true hierarchy ensures mutual
exclusivity, which means that an entity belongs to exactly one class [I5].
This type of taxonomy is the most common in the software engineering sector
[35]. An example of a hierarchical taxonomy taken from Droste et al. [I5] is
shown in Figure 2.1} Another example is the taxonomy from Unterbusch et
al. [34], mentioned also in Subsection which is displayed in Figure
Taxonomies in software engineering are most frequently developed
for the knowledge areas of software construction, software design, software
requirements and software maintenance [35].

Studying app reviews for explanation need identification is a relatively under-
researched area. Consequently, a taxonomy of Explanation Needs can aid in
advancing knowledge and eliciting requirements for developing explainable
systems [34]. Another benefits of a taxonomy, is that it enables researchers
and engineers to extract explainability requirements in a systematic and
rigorous manner [34].

A taxonomy that contains the different types of explanation needs can serve
as a checklist, giving the requirements engineers guidance to discuss with
the customer or users which explanations are desired [23]. In addition,
a taxonomy offers a clearly defined terminology which helps to express
explanation requirements in the further requirements engineering process

"https://dictionary.cambridge.org/
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2.4 Metrics

2.4.1 Interrater agreement

The Interrater Agreement is a measure of consistency among evaluators or
raters who assess or categorize a set of items independently. It gauges the
extent to which multiple raters provide the same ratings, thus assessing
the reliability of subjective judgments across different evaluators. A high
level of interrater agreement indicates that raters have similar perceptions
or interpretations, enhancing the credibility of the assessment results.

2.4.2 Cohen’s Kappa

Cohen’s Kappa (k) is a statistical measure used to evaluate interrater
reliability between two raters who independently classify items into mutually
exclusive categories [7]. It accounts for the degree of agreement beyond
chance, making it more robust than simple percent agreement. A Kappa
value of 1 indicates perfect agreement, 0 indicates no agreement beyond
what would be expected by chance, and negative values suggest agreement
less than chance [7]. Cohen’s Kappa is widely used in research contexts
where consistent and reliable subjective judgments are required, especially
in categorical data analysis [7]. Cohen’s Kappa can be calculated using the
following formula:

_ Po B Pe

"T1-PR

where

e P, is the proportion of units the raters agreed with one another

e P, is the proportion of units for which the agreement is expected to be
by chance.

Kappa values are often interpreted with the scale by Landis and Koch, which
is shown in Table [21]. Although these divisions are arbitrary, they do
provide useful "benchmarks" for discussion [21].

‘ Kappa Statistic ‘ Strength of agreement

< 0.00 Poor
0.00-0.20 Slight
0.21-0.40 Fair
0.41-0.60 Moderate
0.61-0.80 Substantial
0.81-1.00 Almost perfect

Table 2.1: Strength of agreement for Kappa Statistic
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2.5 Terminology

In this section, some often used terms during this thesis will be explained in
order to avoid later confusion between them.

Criterion

A single element of the final criteria list that is developed through this master
thesis.

Bottom-Up Approach

This is an approach that is used throughout this thesis to create new criteria
to be added to the final list. Through this approach, explainability needs are
labeled and than these labels are grouped together into categories. These
categories are further grouped together if they have similarities with one
another until no more grouping is possible. These categories are refined
through different validation steps.

Code system

This term is used to refer to the new criteria that are created in this thesis.
These newly created criteria will than be added to the rest of the gathered
criteria in the final list.



Chapter 3

Related works

3.1 Explainability

Complex software systems, especially those that use artificial intelligence,
can be used to make important decisions in our lives, like for example in
medicine application. This is why explainability in a major topic in the field
of AT in medicine [§]. Ribeiro et al. try to tackle this problem by introducing
a method called LIME (Local Interpretable Model-Agnostic Explanations)
for explaining the predictions of machine learning models [30].

LIME is a novel method designed to explain the predictions of any classifier
by learning an interpretable model locally around each prediction. It
can be applied to both text and image classification models (by using
random forests, neural networks etc.) and provides explanations that are
understandable and faithful to the model’s behavior [30]. LIME is designed
to be model-agnostic, meaning it can work with any machine learning
model. This flexibility allows it to be used in a variety of applications where
models are often viewed as "black boxes". It provides qualitative insights by
identifying the features that contribute most to a specific prediction [30].

While the research from Ribeiro et al. [30] focuses mostly on AI models
and providing explanations for their outputs [30], this thesis focuses on
gathering criteria that can categorise explanation needs. Both these works
though, have as end-goal building user trust in complex systems through
explainability.

Deters et al. introduce a technique to elicit explainability requirements
[11]. This approach allows users to request explanations as they interact
with a system, putting them in a realistic usage context. This also helps in
determining which explanations are truly needed, addressing the challenge
of eliciting meaningful explainability requirements during the early stages of

13
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software development.

To achieve this, a user study with 21 participants was conducted using a
high-fidelity prototype to evaluate the effectiveness of the technique. The
study examined how well users could categorize their needs into the three
predefined categories and provided insights into which types of explanations
were requested at different stages of interaction [II]. The proposed
technique also addresses the "Why-Not" effect, where users tend to request
explanations just because they are available. By offering explanations on
demand and requiring users to actively seek them, the technique ensures
that only genuinely needed explanations are requested, resulting in a more
accurate elicitation of explainability requirements [1T].

The goal of the paper from Deters et al.[11] is to elicit requirements for
explainability during the requirements engineering phase, while this thesis
tries to develop a set of criteria to categorise explainability needs for an
already existing application. Both works are concerned with understanding
where and why users need explanations. Furthermore, both studies
emphasize the importance of involving users in the process, either through
feedback analysis, which is the approach of this thesis, or direct interaction
and feedback elicitation, which is the approach used in the paper from Deters
et al. [11]).

3.2 Categorising explainability

Droste et al. [I5] developed a taxonomy of explainability needs based on an
online survey with 84 participants. The researchers asked the participants to
state their questions and confusions concerning their three most recently used
software systems and elicited both explicit and implicit explainability needs
from their statements. In total, 315 explainability needs were identified and
classified from the survey answers. They classified users’ needs across five
main categories and 11 subcategories. The five primary categories include:
System Behavior, Interaction, Domain Knowledge, Privacy & Security and
User Interface. The full categorisation is shown in Figure 2.1

The study shows that the need for explanations varies based on the type
of software. For instance: Interaction explanations were most prevalent
in complex systems like productivity, creativity and design tools. System
behavior explanations were prevalent across all software types. Privacy and
security explanations were particularly needed in software systems and in
software for communication and information [I5].

This thesis, similar to the research from Droste et al. [15], focuses on
categorising explainability needs. The difference is that in this thesis, the
objective is to create a list of different criteria that can help in this task,
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while the aforementioned paper categorises explainability needs based on
only one criterion. Furthermore, the researchers above gather explainability
needs through an online survey, while in this thesis, explainability needs are
gathered from a dataset of app reviews.

Unterbusch et al. [34] explore in their paper explanation needs in app
reviews. They manually coded a set of 1,730 app reviews from 8 apps and also
derived a taxonomy of Explanation Needs. They were firstly divided into two
main categories: Primary Concerns and Secondary Concerns. Each of these
categories was than divided into subcategories. Primary concerns included
the subcategories: Training, Interaction and Business. Secondary concerns
included Dissatisfaction and Errata. The taxonomy can help developers
understand and address user needs for explanations in a more systematic
way. This paper also demonstrated that app reviews can be useful when
searching for explanation needs [34].

The paper evaluates multiple machine learning (ML) and deep learning (DL)
approaches for automatically detecting explanation needs in app reviews [34].
The best-performing model is a fine-tuned BERT (Bidirectional Encoder
Representations from Transformers) model, which achieved a weighted F-
score of 86% on unseen app reviews.

Similar to this thesis, the research from Unterbusch et al. [34] explores the
needs for explanation in app reviews. Similar to the research from Droste et
al. [I5] though, the explanation needs here are also categorised using only
one criterion. This thesis on the other hand, aims to find a list of criteria
than can help in identifying, categorising and prioritising explanation needs,
since using only one criterion may not be enough.

Tsakalakis et al. [33] provide a different approach from the previous research
when using classifications in a explainability context. Instead of classifying
explanation needs, they classify the explanations that are provided in an
application. In the paper they introduce a proactive, explainability-by-
design approach. This approach integrates explanations into systems from
the outset, rather than as an afterthought.

The authors develop a nine-dimensional taxonomy to classify explanations
based on different criteria: Source, Perspective, Autonomy, Trigger, Content,
Scope, Explainability Goal, Intended Recipient and Priority [33]. The
taxonomy can be translated into a machine-readable format, allowing
automated systems to generate compliant and meaningful explanations. The
paper applies the taxonomy to real-world use cases (e.g., loan applications)
and demonstrates how explanations can be generated systematically to meet
legal and governance standards. This taxonomy and the explainability-by-
design approach can help organizations create more transparent, trustworthy;,
and legally compliant automated systems.
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This paper [33] differentiates itself from this thesis and the other previous
papers mainly in it purpose. Its main objective is classifying the created
explanations instead of the explanation needs of the user. Nevertheless,
this paper provides insights on the importance of providing the correct
explanations in different real-world use cases.

3.3 App-Reviews

Research from Pagano and Maalej [28] provides one of the earliest compre-
hensive empirical studies analyzing over 1 million reviews from the Apple
AppStore. It investigates how and when users provide feedback, the content
of the feedback, and its impact on app popularity and user communities.
The authors identified and categorized user feedback into 17 different topics
(e.g., praise, feature requests, bug reports, and shortcomings) and further
grouped them into four themes: Rating, User Experience, Requirements,
and Community. This categorization helps better understand the types of
information users share in app reviews.

The authors explore the relationships between different feedback types and
app ratings. They found that some feedback topics (e.g., feature requests,
bug reports) correlate with lower ratings, while positive themes (e.g., praise
and helpfulness) correlate with higher ratings [28]. Positive feedback, such as
praise and recommendations, tended to improve app visibility and increase
download numbers, while negative feedback often had the opposite effect.
This suggests that user feedback not only impacts app quality perception
but also its market success [28§].

The paper provides insights on how app developers can leverage user
reviews to extract requirements, identify improvement areas, and prioritize
development tasks. It suggests using user feedback as an alternative to
traditional requirements elicitation methods like interviews and surveys [28].

The referenced paper focuses on categorizing app reviews into distinct
review types (e.g., feature requests, bug reports, user experiences) using
predefined topics and themes to support software maintenance and evolution
tasks. Their approach classifies the overall nature of the review, helping to
understand broad categories of user feedback [28]. This thesis on the other
hand, focuses on categorising explainability needs in app reviews, which is
not a focus of the paper mentioned above. Nevertheless, the paper from
Pagano and Maalej [28] serves as a basis when leveraging user feedback
to extract useful information, such as in this thesis case, for further app
improvement or explainability needs.

Maalej and Nabil [24] introduces a systematic approach to classify app
reviews into four primary categories: bug reports, feature requests, user
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experiences, and ratings. This kind of classification aims to filter and
organize the large volume of user feedback in app stores that can be of interest
for certain stakeholders such as developers, analysts, and other users.

The authors propose several probabilistic techniques, including text classifi-
cation, natural language processing, and sentiment analysis, to predict the
review type. They utilize metadata such as star ratings, text length, and
sentiment scores, combined with different machine learning models like Naive
Bayes, Decision Trees, and Logistic Regression [24].

The paper conducts an extensive evaluation to compare the performance of
different classification approaches. They highlight that metadata alone is
insufficient for accurate classification, while combining metadata with text-
based classifiers yields much higher precision (70-95%) and recall (80-90%)
[24].

Their findings can provide insights into building review analytics tools that
can assist app developers and vendors in processing large amounts of user
feedback more effectively. Their findings also include suggestions on how to
combine text and metadata features to improve classification accuracy [24].

While the referenced paper [24] focuses on classifying app reviews into
predefined categories such as bug reports, feature requests, user experiences,
and ratings, this thesis takes a different approach by developing a set of
criteria specifically tailored to categorize explainability needs within these
reviews, which is not in focus of the aforementioned paper. Instead of
categorizing the type of the review, this thesis focus is the understanding
of what aspects of the app users seek clarification or explanations for.
Nevertheless, in both works, app reviews offer the main exploration point.

Panichella et al. [29] introduced a taxonomy to systematically categorize app
reviews into four key categories: Information Giving, Information Seeking,
Feature Request, and Problem Discovery. These categories aim to highlight
reviews that contain valuable information for software maintenance and
evolution tasks. To build their taxonomy, the authors analyzed developer
communication channels (such as mailing lists) to identify sentence-level
categories relevant for software maintenance. This grounded approach helps
ensure that the taxonomy aligns with the types of information developers
actually need.

The paper proposed an approach that integrates Natural Language Process-
ing (NLP), Text Analysis (TA), and Sentiment Analysis (SA) to classify
app reviews according to the defined taxonomy. This multi-dimensional
analysis allows the system to capture more nuanced information, including
user intentions and emotions, that can be useful for understanding the
context of each review [29]. The authors conduct a comprehensive empirical
study to evaluate the performance of different machine learning classifiers
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using combinations of NLP, TA, and SA features. They demonstrate that
combining all three techniques outperforms using each individually, achieving
higher precision and recall [29].

This paper demonstrates the value of leveraging multiple feature types to
capture different aspects of user reviews [29]. This is a similar approach to
the one used in this thesis, in which several criteria that can be extracted
from app reviews are to be considered, which might help in a categorising
and prioritising process. Furthermore, both works argue that using NLP,
TA and SA methods can be useful when trying to classify app reviews.
Although both works use app reviews to explore their objectives, the focuses
of this thesis and the paper are different, since this thesis focuses entirely
on explainability needs in app reviews, which is not a focus in the paper
discussed.



Chapter 4

Study design

4.1 Research Goal and Research Questions

This section describes the research goal and the objective of the research
questions. The following goal has been formulated using the Goal-Definition
Template: [38]:

Research Goal: Create a list of criteria for the purpose of categorising
and prioritising explainability needs with respect to improving the
precision and efficiency of solving the explainability needs from app users
from the point of view of software engineers and customer support teams
in the context of app reviews.

Following research questions are addressed:

e RQ1: What criteria can support the categorization and prioritization
of explanation needs in app reviews?

e RQ2: Which of these criteria are prioritized highest by requirements
engineers?

Research question RQ1 addresses the core objective of this study. By
creating a comprehensive list of criteria, this research aims to equip app
developers, project managers, and other stakeholders with a structured
approach to categorizing and prioritizing explainability needs. Such a list
will allow these professionals to better organize feedback from users. This
categorization can also support developers in identifying recurring issues
that users face, enhancing overall user satisfaction and fostering trust in
the app. Moreover, it provides a foundation for systematic improvements
in explainability, helping teams to prioritize actions that align with user
expectations and demands.

19
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Research question RQ2 seeks to validate the relevance and applicability
of this criteria list by involving requirements engineers in the evaluation
process. Through interviews, these experienced professionals will assess the
criteria based on different use cases and prioritise the criteria, based on
their perceived importance for each use case. This will provide with a list
of prioritised criteria that can be used as a foundation in the future when
trying to implement the criteria in the respective use cases.

4.2 Approach

Several steps were taken in order to develop the final list of criteria for
identifying explainability needs. The process began by reviewing related
literature on explainability. Focus here was on how explainability has
been categorized in previous research. From here, various categorization
approaches were identified that were deemed potentially useful for this thesis.
However, this initial review also highlighted gaps, revealing opportunities to
introduce additional categories that were not fully addressed in prior work.

To do this, the dataset from Kupczyk [13] [25] was used. This dataset of
app reviews was re-labeled with a focus on the specific explainability need
expressed by the user. This re-labeling aimed to capture the explainability
needs with greater precision, ensuring that the labels reflected the actual
needs of users rather than general classifications. These labels were then
organized into initial categories, which served as a foundation for further
development.

This categorisation went into different iterations of evaluation and validation.
This was done following a Bottom-Up approach, in which low level categories
are continuously grouped into higher categories until until no further
consolidation was necessary. FEach step involved evaluating the clarity,
granularity, and relevance of the categories to ensure that they accurately
captured the range of explainability needs expressed in the dataset. This
process also involved an evaluation from Explainability experts in the
Software Engineering Department of the Leibniz University Hanover. Their
feedback was incorporated and helped in shaping the final version of the
created categories. This process will be covered more in depth in Section
4.0l

The created criteria were then joined to other criteria that were gathered
from different sources. These included app-metadata, related works, external
factors and textual information in the review that could be gathered through
natural language processing. These could provide helpful insights regarding
the wider context regarding the user and the review.

After the list of criteria was finalized, the next phase focused on preparing the
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interviews, which would serve as a key component in validating the criteria.
In this phase, the participants for the study were contacted and appointments
were set accordingly. These interviews would serve as a final validation for
the list of criteria. In these interviews, the participants would evaluate and
prioritise the criteria for each of the use cases. By gathering expert feedback,
the goal was to ensure the practical relevance and applicability of the criteria
in real-world scenarios.

In addition to validating the existing criteria, the interviews aimed to
uncover new criteria and use cases where the proposed approach could be
used. Finally, the participants were also asked to evaluate the study itself,
providing an opportunity to explore whether the proposed approach could be
integrated into day-to-day work environments. The interviews, therefore, not
only validated the criteria but also assessed the overall utility and potential
impact of this approach in the industry. More detailed information regarding
the interview process are discussed in Section [£.7] All the steps discussed
above are summarised in Figure

EXPLORATION CREATING THE CRITERIA LIST INTERVIEWS

Explore current Explore app review
research dataset

Understand gaps in Create new code
related works system

Validate new code
system

Adapt until final Get general
version is reached feedback regarding
the study

Join with other
criteria from
different sources

Figure 4.1: Study design
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4.3 Stakeholders

In the context of categorizing explainability needs in app reviews, several
stakeholders would benefit from this research. Understanding who these
stakeholders are and why these criteria are relevant to them can help in
shaping the design and implementation of tools or processes based on these
criteria, when later used.

1. App Developers and Project Managers:

App developers and project managers are primary stakeholders, as they are
responsible for the design, development, and ongoing improvements of the
application. Explainability-related feedback in app reviews often contains
critical insights into where users struggle to understand the app’s behavior,
functionalities, or decision-making processes. These criteria can help them
prioritize areas requiring better transparency or improvements in the user
interface. They can also pinpoint which aspects of the app are mostly seen
as unclear for the users. For developers, this feedback can guide technical
adjustments, while product managers can use it to shape user communication
strategies and make informed decisions about feature roadmaps.

2. UX/UI Designers

User experience (UX) and user interface (UI) designers play a crucial role in
making applications more intuitive and user-friendly. Explainability needs
identified in user reviews often highlight areas where design choices may not
have been fully understood or welcomed by the users. By using these criteria,
UX/UI designers can systematically identify problematic areas and use them
to design interfaces that present information more clearly, thus reducing user
frustration and increasing satisfaction. This can essential for building trust
and usability in complex systems, especially in data-driven apps or those
leveraging machine learning models.

3. Customer Support

Customer support are often at the front line of managing user queries and
addressing their frustrations. Understanding explainability needs can help
these stakeholders in two ways: (1) by anticipating common questions or
points of confusion and preemptively addressing them through knowledge
bases or FAQs, and (2) by providing clearer and more user-centered
explanations when responding to complaints or queries. Having a systematic
way to categorize and prioritize these needs also enables them to escalate
major usability issues to development teams more effectively.

4. Data Scientists and AI/ML Engineers

In applications that rely on data-driven decision-making, data scientists
and AI/ML engineers are key stakeholders. Users of such applications
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may leave feedback expressing confusion or mistrust around the model’s
outputs or decision-making process. By leveraging the criteria gathered
in this thesis for categorizing explainability needs, these professionals can
identify specific requirements for transparency and interpretability. This
can drive the selection or refinement of models and algorithms to incorporate
features like justifications, explanations, or visualizations that improve user
understanding.

5. Regulatory and Compliance Officers

For applications operating in regulated sectors (e.g., finance, healthcare),
ensuring transparency and compliance with ethical guidelines is very im-
portant. Regulatory officers need to ensure that the application provides
adequate information to users, especially when automated decisions are
involved. By identifying and categorizing explainability needs, these
stakeholders can assess whether the app meets necessary standards for user
rights and data transparency. This, in turn, supports compliance with
regulations such as GDPR (General Data Protection Regulation) [37] or
the EU AI Act [9].

6. End Users

Finally, end users are the ultimate beneficiaries of improving the explainabil-
ity of applications. When explainability needs are identified and addressed,
users gain a clearer understanding of the app’s behavior, which in turn can
improve their satisfaction and trust in the application. By incorporating
user-centric feedback into product development, developers and designers
can create more transparent and reliable applications, fostering a stronger
user-app relationship and reducing frustration or distrust.

4.4 Use cases

The list of criteria for identifying, categorizing, and prioritizing explainability
needs in app reviews has three main use cases: elicitation of explainability
requirements, manual categorization of the explainability needs, and the
automatic categorization of these needs. Each of these use cases addresses a
different stage of working with explainability-related feedback in app reviews,
thereby supporting diverse stakeholders in systematically enhancing app
transparency and user satisfaction.

1. Elicitation of Explainability Requirements

Eliciting explainability requirements from app reviews is a crucial use case,
as it involves extracting requirements from different stakeholders in the
initial phases of the development of an application. Since explainability is a
relatively new field of study, it can be hard to gather precise requirements
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from these stakeholders in this context. The stakeholders might have an
"Why-Not" approach, where they could tend to request explanations just
because they "can not hurt". This of course, would bring with it higher
development costs and also a higher cognition effort for the users [6]. The
criteria gathered in this thesis can offer a more precise frame in dealing
with this problem. They could serve as basis for discussion by confining the
aspects in which explanation requirements can be requested. They can also
serve as an example from which the stakeholders can take inspiration when
thinking about possible requirements.

2. Manual Categorization of Explainability Needs in App Reviews

The manual categorization of explainability needs involves developers or
requirements engineers reviewing app reviews to systematically classify
feedback based on the developed criteria. This process is particularly useful
for understanding the diversity and distribution of explainability-related
concerns among users. By manually categorizing feedback, researchers can
identify common patterns, categorize reviews into predefined explainability
types (e.g., confusion about app navigation, difficult to understand Ul etc.),
and evaluate their relative importance. This manual approach is valuable
during the early stages of developing a new feature or revamping an existing
one, as it provides a nuanced understanding of user sentiment and context.
Additionally, manual categorization helps validate and refine the criteria,
ensuring that they are robust and applicable to a wide range of scenarios.
This deep qualitative analysis is essential for identifying subtle yet impactful
explainability needs that might be overlooked by automated tools, thus
complementing the automated approach.

3. Automatic Categorization of Explainability Needs in App
Reviews

Automating the categorization of explainability needs is the third use case,
which aims to scale the analysis of large volumes of app reviews. With
the increasing volume of user feedback, manual analysis alone can often
be impractical for identifying explainability needs in a timely manner. By
leveraging natural language processing methods and machine learning mod-
els trained on the developed criteria, automatic categorization can rapidly
scan, categorize, and prioritize reviews based on some pre-defined context-
specific rules. This automation is particularly beneficial for continuous
monitoring, allowing developers and product managers to receive real-
time insights into emerging explainability issues. Automated categorization
also helps in highlighting patterns across different app versions or user
demographics, making it easier to track the impact of feature updates on user
understanding. While automation lacks the nuance of manual categorization,
it provides a scalable solution that enables stakeholders to focus on the
most critical issues and act quickly to address them. By integrating the
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criteria into automatic categorization models, organizations can streamline
the process of identifying and responding to explainability needs, thus being
more efficient when dealing with them.

4.5 Requirements

The main objective of this thesis is to create a list of criteria that can be
used to in the automatic identification, categorisation and prioritisation of
explainability needs in app reviews. With this goal in mind, several key
requirements emerge.

First, the criteria must be designed for implementation in an automated
context. This means they need to be suitable for algorithmic integration and
recognizable by a computer. The criteria should be clear, measurable and
possible to extract with computational methods so that they can effectively
be used in machine learning models and other automated tools.

Second, the prioritization process during expert interviews should follow a
"knapsack" approach, where participants are encouraged to prioritize criteria
that maximize benefits while minimizing costs. Each additional criterion
incorporated into a machine learning algorithm increases development and
computational costs, so participants must consider this trade-off when
selecting the most important criteria.

Furthermore, the criteria in the list should be as distinct from one another
as possible. This means that criteria should have as few overlaps with one
another as possible, in order to avoid redundant information. Minimizing
overlap between criteria is essential to avoid redundancy and ensure that each
of them provides unique value in identifying and addressing explainability
needs. The criteria uniqueness is covered more in detail in Chapter

4.6 Creating the new criteria

In this section, all the steps taken to create the new code system will be
presented. These steps are also summarised in Figure [4.2

4.6.1 Creating the first labels

In order to fill in the gaps of previous studies when categorising explainability
needs, the dataset from Kupczyk [13] was re-labeled. For the evaluation of
the dataset and the re-labeling process, the software MAXQDA E| was used.
These labels that were created during this step were mostly of two forms.

Thttps://www.maxqgda.com
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The first type involved summarizing the sentences where the explainability
need was expressed in just a few words. For example, if a user wrote:

"T do not understand why would you move the search bar from
the top to the bottom. It was way better as it was."

than the label would be "search bar moved". This method worked well
for needs that were straightforward to summarize and often allowed similar
explainability needs to be grouped under a single label. Similar to the
example above, there were over 40 other reviews in the dataset that addressed
the same concern and they were all categorised under the same label. This
demonstrated that common explainability needs could easily be grouped
when they addressed the same issue.

The second labeling method involved using the entire sentence expressing
the explainability need as the label itself. This method was mostly used for
cases where the needs were too specific to be summarized and could not be
combined with other similar reviews.

After all reviews with explainability needs in the dataset were labeled, the
next step was to group these labels into categories. This resulted in the
creation of the first coding system which comprised 15 top-level categories.
Most of the top level categories were separated into sub-categories. In total,
38 categories were created in the first iteration. An overview, together with
examples for each category, is shown in Table This first system served
as the foundation for the next iterations.

However, in this first system were noticed some problems. These were mostly
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Top-level category

Bottom-level category

Example

cant download music

Account related Account .
on basic account
Login cant login
Bug related Bugs app freezes

Unexpected behaviour

lost progress

Connectivity and device support

sync app data between
devices

Content related

General content of app

feed shows suggested
posts more than
chronological order
posts

Ads

Ads show up too often

Costumer support

How to Contact support

Features

Feature request

feature request- return
of story pins

Feature changed

feature changed- need
to download image
to zoom

Feature removed

removed feature- swipe
to dismiss

Missing features

no dark mode

General app idea

one mistake takes one
heart

Hardware

high ram use

Money related

Financial concept

why high prices

Money app doesnt return money
Cards cant verify card
Payments charged for something

i didnt book

Refund related

need refund

Orders cant change order
Security General security concerns too much tracking
Permissions why need for birthday
information
Verifications why does app needs

many verifications

UI-UX related

Unhappiness of user

unhappy with app
organisation

Ul

change font

UXx

app takes long time
to load

Unclarity, tutorial needed

General question

What is COP?

Change the state of something

change profile picture

Update related codes

search bar moved

Unclear-review-no need

Table 4.1:

First iteration of new criteria
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Interaction type | Aspect Subcategory
Direct interaction | UI/UX
Features Notifications
Content Ads, Feed content
selection
Account Login
Bug/Unexpected
behaviour

Indirect interaction | General app idea
Costumer support

Orders, Financial

Business
concept
. Permissions,
Security . .
Verifications
Definitions General questions

Table 4.2: Aspects and subcategories of No time mentioned

related to the fact that the distinctions between the categories were not
always clearly separated from one another. This would mean that some
explanation needs could possible be grouped in more than one category.
This would violate the mutual exclusivity principle of a hierarchical coding
system. Most of the problems could be caused by the Update related codes
category. Codes that were grouped into these category often overlapped
with other categories. To tackle this problem, some changes were taken to
the created code system.

The Time aspect was moved as the primary categorisation aspect. This
included three categories: Updates, Future and No time mentioned. In
the Future category, two sub-categories were included: Feature requests
and Plans. The Update category included the Feature missing, Feature
changed, Bugs and Unexpected Behaviours. For reviews not tied to a specific
time frame, two major categories were created the Direct and Indirect
Interactions. Both of them were further divided into sub-categories, which
mostly consisted of the remaining categories from the first iteration. A
graphical depiction of these subcategories is included in Table The
results from this iteration were used as basis of discussion for the pre-study
evaluation.

4.6.2 Pre-study

The pre-study served as a step of validation of the current steps undertaken
until now. The participants in the pre-study were four explainability
experts.The pre-study was structured into two main parts: a presentation
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and a discussion. In the presentation, the objective of the thesis was
presented and the current progress was shown. This was followed by
a discussion, where the experts provided feedback and made suggestions
regarding possible changes and improvements that could be undertaken in
the newly created code system.

Following changes were undertaken after the discussions:
e No time mentioned was renamed into Time independent

e Bugs and Unexpected Behaviour was moved into a separate category,
which was named Behaviour

e Time aspect was also reclassified as its own category rather than being
the top level of the coding system.

These points of discussion also led to the separation of the feature-related
labels from the rest of the aspects and the creation of another new category,
the Feature category. This would be similar to Time Aspect and Behaviour
in being independent of the other categories. Further labels were then added
to this category. Furthermore, following points were taken in consideration
and although they were not reflected directly into the next iteration of the
criteria, they were implemented in a later iteration:

o Feature request and Feature missing are too similar and should be
merged

o (Costumer support and Business should be in another category than
the rest of the system aspects since they are not similar with the rest

This resulted in the development of a new code system. Unlike the previous
version, which had a single main category ( Time Aspect), the updated system
consisted of four independent top-level categories. Instead of assigning
each explainability need a single label from the hierarchical structure, each
explainability need could be now categorised into four different categories.
These categories were: Time Aspect, Behaviour, Feature and App Aspect.
A representation of the sub-categories included in each of the top-level
categories is displayed in Table [£-3] All these top-level categories will serve
as elements for the final list of criteria which are to be gathered in this theses.

The difference of this coding system, from the previous iterations can be
made easily noticeable with an example, like the one used in Section
We get a review where the explainability label is "search bar moved". With
the first categorisation displayed in Table this label could be categorised
in both Update-related and UI/UX. This would not be optimal because it
would violate the mutual exclusivity principle of a hierarchical coding system.
In the second iteration, this label could be categorised under Update and
than Feature changed, but the aspect which was changed would not be clear.
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Time aspect | Behaviour Features App aspect
B ted
Future ug / .Unexpec “ 1 Feature changed | Account
behaviour
Update Not categorised Feature removed | Connectivity
Time o
independent Feature missing | Content
Feature request Costumer
support
Unclarity General
about feature app idea
Definition Hardware
Unhappiness .
about feature Business
No Feature Security
UI/UX
Main app
functionality
Accessibility
Meta

Table 4.3: Code system after pre-study

With the current version of the coding system, this label would receive
four categories: Update in the Time aspect criterion, Not categorised in
the Behaviour criterion since it does not mention any bug or unexpected
behaviour, Feature changed in the Feature criterion and UI/UX in the
App aspect criterion. Through these criteria, a developer could directly
understand that the review is related to an issue after an update, regarding
a feature that was changed in the Ul, without having to read the full review
at all. This is summarised in Table 4.4l

First iteration

Second iteration

Iorreepplie codes codes
"search bar | UI? Update o
moved" related? Time: Update

Feature: Changed

Behaviour: Not
categorised

Aspect: Ul

Table 4.4: Coding example for the different iterations
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4.6.3 Adapting the new criteria

In this iteration, there were also some problems that were noticed, that
prompted for some further changes. This included joining the Unexpected
behaviour and the Bug category in the Behaviour criterion, since a clear
separation between them was not possible. The Features criterion was
expanded by adding the No feature category, which would tackle the missing
of a category for explainability needs that did not mention any feedback
regarding a feature in particular. Furthermore, the App aspect criterion was
also expanded by adding the categories: Main app functionality which covers
the main functions of an app, Accessibility and Meta. Finally, the category
Ul/UX was separated in Ul and UX.

4.6.4 Subset Validation

Before using the newly created criteria in the interviews, another validation
step was completed. A subset of the original dataset was labeled manually
by the writer and the supervisor of this thesis. The goal of this validation
was to check the completeness of the created criteria when comparing to the
first iteration and the taxonomy from Droste et al. [I5]. For this step, a
total of 104 reviews was selected from the dataset. This subset included at
least three reviews, when possible, for each category in the taxonomy from
Droste et al. [I5] and from the first iteration of the code system, shown in
Table [£.1] Following results were reached after the labeling from the two
raters:

In total 416 codes were distributed with 119 disagreements. The total
agreement rate was 71,39%. For the Time aspect category, there were
only three disagreements. The Inter-rater agreement was 97,11% while the
Cohen’s Kappa was 0,91 which hints to an "Almost perfect agreement"
according to Cohen. In the Behaviour category there were 28 disagreements,
which meant an Inter-rater agreement of 73,07%. The Cohen’s Kappa value
was 0,46 which hints to a "Moderate agreement". The Feature criterion had
the lowest agreement rates, with 48 disagreement labels, meaning an Inter-
rater agreement of 53,84%. The Cohen’s Kappa value was 0,38 which means
a "Fair agreement rate". The App Aspect category had 40 disagreements.
The Inter-rater agreement was 61,53% and the Cohen’s Kappa value was
0,56. This means a "Moderate" agreement was reached. The results are
summarised in Table L5

Most of the disagreements in the App Aspect criterion came because of an
insufficient definition of the Content and UX category beforehand. In the
Feature criterion, most of the disagreements came because of the No Feature
and Unclarity about feature categories. To tackle some of the problems
encountered during this validation step, some final changes were undertaken
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Category # Disagreements | Inter-rater agreement | Cohen’s Kappa
Time aspect | 3 97.11% 0.91
Behaviour 28 73.07% 0.46
Feature 48 53.84% 0.38
App Aspect | 40 61.53% 0.56

Table 4.5: Agreement between raters

to the coding system. Through this validation step though, it was clear that
these criteria could cover both of the aforementioned classifications. The
final form of the coding system is presented in the following section.

4.6.5 Final adjustments

Several changes were made to the previous version of the new coding system.
Some of the categories were renamed. Main app functionality was renamed to
Base functions. This included the subcategories Notifications, Data exchange
and synchronisation. General app idea was renamed Development rationale
since it considers the reasons behind a decision when developing the app.
The App Aspect category was separated in to main subcategories, System
aspect and Non-system aspect. The latter includes Hardware, Business and
Costumer Support. The System aspect category includes the remaining
subcategories that are directly related to the system or application. These
aspects were seen as separated from the rest because they do not involve a
concrete aspect of the application itself but rather the surrounding part of
it.

The Features criterion was renamed into Features feedback. The new label
Feature present? was added to cover the cases in which the users ask whether
a feature is actually present in the app or not. This substitutes the Feature
missing category, which was deemed redundant. The Definition category was
substituted with Tutorial needed. Unhappiness about feature was removed
since it was covered from another criterion (Sentiment of review) in the final
list.

During the labeling from the two raters, a rule emerged which connects the
Features feedback and Aspect criterion. If the aspect selected in a Non-system
aspect than in the Feature feedback criterion, the value No feature mentioned
should be selected, since it does not affect a feature of the app.

The Behaviour criterion was renamed into Unezxpected system behaviour.
This criterion was restructured and expanded. The two main categories
were Bug and Not categorised. The Bug category would be expanded with
the subcategories Performance degradation, Data loss, Incorrect output, Un-
expected interaction outcomes, Inconsistent behaviour. These subcategories
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would try to cover most kinds of bugs that can happen in an app.

The Time aspect criterion would remain unchanged structurally and only
get renamed to Time context. The final form of the newly formed criteria,
together with a short definition and an example will be presented below.
Table summarises all categories in a more concise way.

The Time context criterion consists of the categories Future, Update and
Time independent.

1. Future

Definition: Labels all explanation needs regarding future plans of
developments or updates for the app.

Example: Are you going to add a search function?
2. Update

Definition: Can be used to label all questions regarding update
related problems.

Example: Why is the app so unstable since your last update?

3. Time independent
Definition: Every review that does not have a specific time anchor.
Example: How can I upload a new profile picture?

The Unexpected system behaviour criterion consists of the categories Bug
and Not categorised. The latter can be used to label reviews which are not
mentioning a concrete bug. The category Bug meanwhile, is further divided
in the following subcategories:

1. Performance degradation

Definition: Regards all reviews which mention a worsening perfor-
mance.

Example: Why does the app take so long to download a song?
2. Data loss

Definition: Can be used to label reviews that address issues regarding
data loss from the users.

Example: My notes have been erased completely. How can that be?
3. Incorrect output

Definition: Can be used to label explainability needs regarding false
output.
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Example: Why does the app show me that I walked only 500 steps
when I actually did over 3km?

Unexpected Interaction Outcome
Definition: Can be used to address unexpected output issues.

Example: I always get an error popup when I try to reply to a
comment. Why is that?

Inconsistent behaviour

Definition: Can be used to label explainability needs regarding
problems with inconsistent behaviour from the app.

Example: Why is it that everytime I open your app, the first time I
go into a chat I can not see the messages. It just keeps loading.
After I close it and reopen it, it works? What am I doing wrong?

This criterion additionally includes the category Other for the cases that
might not be covered in any of the categories mentioned above.

The Features feedback criterion is divided in eight categories.

1.

Feature changed

Definition: Regards all reviews which mention change in a feature.
Example: Why did you move the search bar from top to bottom?
Feature removed

Definition: Can be used to label reviews that mention the removal of
a previous feature.

Example: Why did they remove the option to clear all pages?
Feature request
Definition: Can be used to label feature requests from users.

Example: I don’t understand why isn’t there already a dark mode for
this app. Can you add it in your next update?

Unclarity about feature

Definition: Can be used to address some unclarities that the users
could have about different features.

Example: What does this animal actually do other than ask for food?

Feature present?
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Definition: Can be used to label cases in which a user is unsure
whether the feature is present in the app or not. It could also
be a case in which the user just can not find a function.

Example: Is there a possibility to change my Email because the app
is too unintuitive for me to find it myself.

6. Tutorial needed

Definition: Regards reviews where the users need help when navigat-
ing the app or do not understand a concept in it.

Example: How do I get to use the ECG to check if I have normal
sinus rhythm?

7. No feature mentioned

Definition: Can be used to label reviews that do not mention
explicitly a feature. This can be used in relation to the Non-
system aspect category of the Aspects criteria, since it does not
cover app-aspects.

Example: Why does this app consume so much RAM?

This criteria also has the category Other for the cases that might not be
covered in any of the categories mentioned above.

The Aspect type criterion is divided into two main categories System aspects
and Non-system aspects. The categories and subcategories will be presented
below. The division in subcategories is not complete. This means that if a
review can not be labeled with one of the subcategories, it just receives the
label of the category. The subcategories serve the purpose of better gathering
similar explanation needs but do not cover all faucets of each category.

Firstly, the System aspects will be presented. The Account category is
divided into Login and Profile data. This category tries to group all
explanation needs related to an account that a user made for an app.

1. Login

Definition: This subcategory gathers all labeled reviews which ad-
dress questions regarding the login process.

Example: Since yesterday I cant login in your app. What is going
on???

2. Profile data

Definition: Here, questions regarding the profile data of a user can
be gathered. This might include for example, changing some
personal data information or even resetting a password.
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Example: How can I reset my password on your app?

The Content category aims to address issues that the users might have with
the content that an app provides to its users. The most common cases can
be divided in the Advertisement and Feed subcategories.

1. Advertisement

Definition: This subcategory includes unclarities regarding the ads
that an app might show.

Example: Why are there so many ads your app??? Its impossible to
do anything without being bombarded with ads.

2. Feed

Definition: This subcategory groups questions regarding the content
displayed on their feeds. This is especially relevant for social
media apps, since mostly them have this feature.

Example: Why do i see posts from people i do not know in my feed??

The Development rationale category gatherers reviews in which users have
questions regarding why a specific decision was made in the development
process.

Example: Why can we only make one mistake before having to wait to try
again? How can we learn through this app if we are not allowed to
make mistakes?

The Security category aims to group unclarities regarding the security
features of an app. It is divided in to subcategories.

1. Permissions

Definition: This subcategory gathers reviews in which users are not
sure why the app needs some permissions from.

Example: Can you tell me why does your app need access to my
contacts? It does not make any sense.

2. Verifications

Definition: Here, reviews with unclarities regarding the verifications
that an app might require are grouped.

Example: Why do i have to verify myself in two separate apps before
managing to access your app? Is very cumbersome.

The Base functions category focuses on essential app features that support
its core functionality. This category tries to cover functions that most of the
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apps posses by default. The subcategories here are Notifications and Data
Exchange and Synchronisation.

1. Notifications

Definition: This subcategory gathers reviews where users are unclear
about the app’s notification settings or behavior, such as why
certain notifications are received or how to manage them.

Example: Why am I still getting notifications even after I turned
them off in the settings? It’s really annoying.

2. Data exchange and synchronization

Definition: This subcategory includes reviews where users are unsure
about how data is shared or synchronized between devices or
platforms, including issues with cloud syncing or data transfer
between apps.

Example: Why are my notes not syncing between my phone and
tablet? They always seem out of sync, and it is frustrating.

The UI (User Interface) category addresses user concerns and confusion
about the app’s design and layout, focusing on how users interact with visual
elements like buttons, menus, and navigation structures.

Example: Why did you change the location of the search bar? It used to
be at the top and it was way better like that.

The Accessibility category gathers reviews related to the app’s usability for
people with disabilities or those needing specific accessibility features, such
as screen readers, larger fonts, or voice commands.

Example: I'm visually impaired, and the text in your app is too small. Is
there any way to increase the font size?

The Domain-specific category groups explainability needs regarding domain-
specific issues. This are related to the app in question only and can not be
related to other applications. It can be divided in two subcategories.

1. App-specific functions

Definition: This subcategory deals with reviews related to app-
specific functions that are not available at most apps but rather
only for the app for which the review is written.

Example: How can i add a podcast to my favorites list? (App-specific
function on Spotify)

2. Definition needed
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Definition: This subcategory includes reviews where users ask about
the definition specific terms they might encounter on the app.

Example: What does COP mean?

The Meta category gathers reviews where the explainability need is not very
clearly expressed from the user.

Example: Can I please have the HBO max app back?
Finally, the Non-system aspect categories will be presented.

The Hardware category focuses on issues related to the compatibility and
interaction of the app with physical devices and hardware components. It
includes the following subcategories:

1. Device support

Definition: This subcategory gathers reviews where users are unclear
about the app’s compatibility with specific devices or operating
systems.

Example: Why doesn’t this app work on my tablet? It only seems to
be optimized for phones.

2. Connectivity

Definition: This subcategory includes reviews where users are con-
fused about connection issues, such as problems with Bluetooth,
Wi-Fi, or mobile data connections.

Example: The app constantly loses connection to my smartwatch.
Can you fix the Bluetooth sync issues?

The Business category addresses user concerns about the app’s commercial
and transactional aspects. It is divided into the following subcategories:

1. Financial Concept

Definition: This subcategory includes reviews where users express
confusion about the app’s pricing model, subscription plans, or
hidden fees.

Example: Why am [ being charged monthly when I thought it was a
one-time payment?

2. Orders

Definition: Reviews that discuss problems or uncertainties with
placing or tracking orders are grouped here.

Example: I placed an order through your app, but it’s not showing
up in my account. What’s going on?
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3. Payment

Definition: This subcategory focuses on confusion or issues related
to how users pay for services or products within the app.

Example: Why can’t I use PayPal to make payments? It only shows
credit card options.

4. Refunds

Definition: This subcategory groups reviews where users are unclear
or frustrated about the refund process.

Example: I requested a refund over a week ago, but I haven’t seen
any updates. How long does it take?

The Customer support category gathers reviews related to the quality
and responsiveness of the app’s customer service. It has the following
subcategories:

1. Not responding

Definition: This subcategory includes reviews where users complain
about not receiving a response from customer support.

Example: I have tried calling your customer support numbers during
working hours but nobody picks up. How can i actually contact
you?

2. Useless response

Definition: This subcategory covers reviews where users feel that
customer support responses were not helpful or did not resolve
their issue.

Example: Support told me to reinstall the app, but that did not fix
my problem. Why is there not a better solution?



CHAPTER 4. STUDY DESIGN

40

BLIOILID POYROID A[MOU 91} JO UOISIOA [RUL :9'F d[qe],

e

asuodsay]
ssofos() ‘Surpuodsor joN

1roddns 1eum)soy)

spunjoy ‘yuowiAe g

. . ) ssouIsng
‘s1p1() ‘4deduo)) rerouRul]
Ayraryoouuoy) ‘proddns ao1ad(] aremprel | joodse wo)sAS-UON
BPO
A91[1q 188000y

popaaN uonuya(g
‘suorjounyy oywads-ddy

syeds-urewioq

RSUETe)

uoryesI
-0IDUAG pue a3ueyOXH
®YR(] ‘STOIYROYIION

Suorjouny osed

Popoau TeLIoInT,

pastioSageds JoN

©IOTN POUOTIULUL 9INJLIJ ON heliile)

n Jyuwesaxd (s)oanges] INOTARYOE] JUI)SISUOOUT

SUOTIROYLIDA N i § N somrodIM()

‘SUOISSTULIO Apmodg (s)omyuag ynoqy Sy uorjorIAU] pojdadxau)
oreuorjey juotrdopaa(] ysonboy (s)ornyes; mdinQ j0d1100U] Juopuadopuy owL],
PO9 ‘JUOWOSTIIAPY JuOUO)) PoAOWIaL (S)oInyed,] SSOTT eIR(] orepdn
®vyep d[yoid ‘uIsor| U020y 1oodse wo)sAg poaSueyp (s)oInyes, | UOI)eprISH(] FOURULIONSJ ang I,y

soL10893R0qNg

syoodsy ddy

od Ay yoadsy

JoRAPId,] SoINYea]

so110801RO(NG

InoraRydg woIsAg pajoadxoup)

JX0U0)) W],




4.7. INTERVIEWS 41

4.7 Interviews

To validate the final list of criteria, a series of interviews were conducted
with six software engineers. The interviewees were between the ages of 25
and 38. Four of them work at medium-sized companies, while two work at
global conglomerates. Most of them had 1 to 4 years of experience with
requirements engineering, while one of them has 18 years of experience. The
interviewees were also asked how much they have to do with explainability
needs in their day-to-day work. They selected between a 1 to 5 scala, where
1 stands for very much and 5 stands for very little. The results were mixed,
ranging from 1 to 4. The average of the answers was 2.5, which is the middle
ground of the scale. Each interview was structured into three distinct parts.

In the first part, a brief presentation of the thesis was provided, outlining
its objectives, introducing the concept of explainability, and presenting the
proposed criteria along with the identified use cases. This ensured that the
interviewees had a clear understanding of the context and purpose of the
research.

In the second part, the participants were asked to prioritize the criteria
according to their relevance for each use case, providing valuable feedback
on their practical applicability. To do this, the interviewees gave a rating
from a scale ranging from 1 to 4, where 1 stands for high priority and 4
stand for low priority. The scale with only 4 values instead of 5 was selected
in order to encourage the interviewees to select whether they though the
criteria was rather helpful or rather not, instead of relying on a neutral value
in their evaluation. This way the results can be more polarised and more
insightful. If the interviewees thought that a criteria was not at all helpful
or related to one of the use cases, they were marked with a -.

Finally, the third part included questions about the interviewees’ demo-
graphic backgrounds, which were covered above, and regarding suggestions
for potential extensions or improvements to the study in general. The
interviewees were asked if they though that these criteria could be useful in
another use cases which was not covered in the interview. Furthermore, they
were asked if they would use these criteria in their current work environment.
They were also asked if they could think of further criteria that were not
already mentioned, that could be helpful in these use cases, or in the use
cases that were added from them.

Finally, the interviewees were asked about their general thoughts about the
interview and the study. The questions included asking for suggestions
regarding possible changes in the study, how useful they though this research
was and finally, whether they had any other notes regarding the interview or
research. The main steps of the interview process are summarised in Figure

through the Flow-Method [32] [31].
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Chapter 5

Results

In this chapter, the results of this thesis will be discussed. Firstly, the
final list of criteria that was gathered will be presented. This includes the
definitions for each criterion, their purpose and how the criteria differentiate
from one another. Finally, the results of the interviews will also be presented.
This includes the prioritisation part, in which the participants were asked to
prioritise the criteria regarding their use in the different use cases and the
more general questions that were asked regarding further extensions of the
criteria and the use cases and also the usefulness of the study.

5.1 Final list of criteria

This list is created by gathering criteria through a mixture of sources. Some
of the criteria are app-specific metadata that can be gathered from the
reviews metadata, like the app version or the hardware used by user that
wrote the review. Other criteria can be gathered by using NLP techniques
on the reviews. Examples here are the sentiment of the review, the length
or punctuation of the review. Another source to gather criteria were related
works, such as the research from Droste et al. [I5] and Unterbusch et al.
[34]. Finally, the criteria created in this thesis are also added to the list. The
list of criteria as well as their contribution to categorising and prioritising
explainability needs, together with the origin of each criteria is presented
below:

1. Username

Contribution: Enables identification of frequent or influential users
who may provide detailed feedback. Repeated feedback from the
same users may highlight persistent issues that may require closer
attention.

43
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Origin: Review metadata

. App version

Contribution: Helps assess if explainability needs are linked to
specific app versions. This can prioritize updates or fixes to newer
releases, or flag recurring issues in older versions.

Origin: Review metadata

. Hardware used

Contribution: Helps assess if explainability needs are tied to specific
devices. Device-specific issues, such as layout differences or
performance problems, can be prioritized differently than other
issues.

Origin: Review metadata

. OS

Contribution: Identifies OS-specific explainability needs. If a certain
platform (e.g., Android) has more issues, targeted support or
updates can be created for that OS.

Origin: Review metadata

. Date of review

Contribution: Tracks trends over time, allowing teams to see if cer-
tain updates or seasons cause spikes in reviews with explanation
needs. Reviews from key dates like after major updates can be
prioritized in order to fix the possible problems that came with
the update.

Origin: Review metadata

. Genre

Contribution: Helps identify patterns in explainability needs based
on app type. Apps in different genres (e.g., gaming vs. finance)
may require varying levels of explanation, helping teams focus on
genre-specific requirements. This criterion is mainly useful when
doing a more broad research, which touches different types of
apps, instead of just one app. So for the purpose of evaluating
only the own app, it might not be relevant.

Origin: Review metadata

. Name of app
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Contribution: Allows for tracking which apps generate more ex-
plainability needs. Frequent issues tied to specific apps can
guide targeted updates or additional user education. Similarly
to the Genre, this criterion also is more helpful when dealing
with different apps and can be used to group explainability needs
based on the specific apps. It may not be relevant in a context
where only one app is being evaluated.

Origin: Review metadata
8. Frequency of explanation need

Contribution: Explanation needs that are repeated in a lot of reviews
show that the same problem might be affecting a number of users,
which might suggest a widespread confusion. Addressing these
ensures a broad impact, improving the experience for many users.

Origin: Review metadata
9. Sentiment of review

Contribution: Negative sentiment highlights critical areas where
users are frustrated or confused. Prioritizing negative feedback
ensures the most urgent explainability needs are addressed first.

Origin: Review text, can be gathered through NLP methods
10. User experience (UX)

Contribution: Can help categorise the described user experience in
the review. If the user mentions that they had an awful user
experience when using the app, than the review might need to be
prioritised higher. This can sometimes overlap with the sentiment
of review, since a negative user experience can reflect a negative
sentiment in the review. But there might be cases in which the
two might differ, depending on how the user writes their review,
therefore this criterion can still be helpful.

Origin: Review text, can be gathered through NLP methods
11. Length of review

Contribution: Longer reviews might often indicate more complex
issues, which may require more attention. Also, the users that
take the time to voluntarily write a long review, describing their
issues they had with the app, might be more committed to the app
and therefore, prioritizing these reviews can help resolve deeply
rooted user misunderstandings and increase user satisfaction.

Origin: Review text, can be gathered through NLP methods



46

12.

13.

14.

15.

16.

17.

CHAPTER 5. RESULTS

Punctuation

Contribution: Reviews with a lot of punctuation like several question
marks or exclamation points can signal urgency or frustration.
Prioritizing these reviews may help address pressing user con-
cerns.

Origin: Review text, can be gathered through NLP methods
W-Questions

Contribution: Can help indicate the interaction that caused the
explanation needs for the user. Can be more helpful when
combined with the Verbs criterion.

Origin: Review text, can be gathered through NLP methods
Verbs

Contribution: Indicate what the user are trying to do that causes
them issues. When combined with the W-Questions, we can
get questions like "How...change", or "Why...did remove" which
provide a context and the action that created the issues for the
user.

Origin: Review text, can be gathered through NLP methods
Costs

Contribution: Supports decision-making by weighing the cost of
addressing certain explainability needs. This can be expressed in
either a fixed amount of money or in "programmer days". High-
impact, low-cost solutions can be prioritized, in order to optimize
available resources. The way that this criterion is implemented
and how the estimations are made depend of the needs of the user
of this list.

Origin: Can be estimated from an expert depending on the context
of the user of this list

Explanation need expression

Contribution: The explanation need expression can be either explicit
or implicit, as mentioned in the Droste et al. taxonomy [15].
Explicit explanation needs issue directly what their problem is,
while implicit ones need more work because it might not be
directly clear what the issue is.

Origin: Criterion taken from the research of Droste et al. [15]

Targeted interaction type
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Contribution: This criterion also derives from the work of Droste et
al. [I5] as it is a category of the taxonomy presented by them.
They define it as the explanation needs that arise when a user
wants to know how a certain operation with the software can be
performed. They divide it into three subcategories: Operation,
Navigation and Tutorial. Tutorial is covered in the criteria
Feature Feedback and App Aspects through the subcategory
Definitions. Therefore, only the first two categories are relevant
in this list. This category can also have overlaps with the
mixture of the categories W-Questions and Verbs. This is not
guaranteed though, because it is dependant on how the users
write their reviews. Also in the cases in which the explanation
need expression is implicit, this category is more useful than the
other two mentioned previously, because they can not indicate an
implicit explanation needs sufficiently.

Origin: Criterion taken from the research of Droste et al. [15]
18. Prioritization of explanation need

Contribution: This is a criterion taken from the Unterbusch et al.
taxonomy [34]. The implementation here, similar to the costs,
depends on the context and the needs of the users of this list.
The reviews and the explanation needs can be categorised in
Primary and Secondary Concerns, based on the classification from
Unterbusch, or they can be classified differently depending on
the specific needs of the evaluation process. This criterion can
help in the prioritisation process by better dividing the available
resources.

Origin: Criterion taken from the research of Droste et al. [34]
19. ISO-25010 Quality model

Contribution: The quality model [1] is the very important part of a
product quality evaluation system. It determines which quality
characteristics will be taken into account when evaluating the
properties of a software product. Aligning explainability needs
with recognized quality standards helps ensure the app meets key
attributes like usability and reliability and that it fulfills world-
known standards. This can guide prioritisation process.

Origin: Quality model ISO-25010 [I]
20. Time Context

Contribution: This criterion was added during the development of
this thesis, similar to the rest of the criteria presented below.
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It can help in determining whether the explanation needs are
related to an update or rather about the future plans for the app
development.

Origin: Criterion created through the Bottom-Up approach in this
thesis

21. System Behaviour

Contribution: Can be helpful in determining what kind of unex-
pected system behaviour is causing the explanation needs for the
user.

Origin: Criterion created through the Bottom-Up approach in this
thesis

22. Features feedback

Contribution: Determines what kind of problems the users have with
the features of the app that caused the explainability needs for
them.

Origin: Criterion created through the Bottom-Up approach in this
thesis

23. Aspect type

Contribution: Explains which aspect is confusing to the users. It
can be a system aspect(e.g. UI) or a non-system aspect (e.g.
Customer support). This helps in categorising and prioritising
depending on the most affected aspects and the ones that are
deemed most important. Solving explainability needs in both
cases can improve user satisfaction.

Origin: Criterion created through the Bottom-Up approach in this
thesis

5.2 Criteria uniqueness

In order to evaluate if the criteria had overlaps between one another, a criteria
uniqueness matrix was created. This matrix had N rows and columns, where
N is the number of criteria in the list. Both z and y axis included all the
criteria mentioned above. In the cells in which a overlap could be possible,
a brief note was inserted, while in the rest of the cells where no overlap was
present, a "-" was added. The diagonal was marked with an "x", since the

same criteria was present in both axis. Following overlaps were noticed:

As previously mentioned, the criteria Sentiment and User Experience can
be similar, as a positive or negative user experience often translates into a
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similar sentiment in user reviews. However, this is not always the case, as
it depends on how the user chooses to express their thoughts in the review.
Despite the overlap, it remains useful to consider both criteria separately,
since they can provide different insights based on user feedback.

The category Unclarity about feature might often translate to a bad UX,
therefore an overlap can also exist in this case. However, this is considered
a relatively weak overlap, as it depends heavily on how the user responds
to the unclarity. Another possible weak overlap for the UX criterion, and
maybe also Sentiment, can be with the criterion Punctuation. For example,
excessive use of question marks or exclamation points may signal frustration
or confusion, which could imply a negative sentiment or poor UX. On the
other hand, this could simply be a user’s writing style, with no significant
connection to their actual experience.

The criteria Date of review and Time context can also have overlaps, since
they both are related to the time context of the review. These overlaps
might mainly come from the Update category which is present in the Time
context criterion. Both these criteria can be used to trace problems with an
update. The Date of review criterion however, can be relevant not just for
this case, but also for other cases, which are not covered in the Time context
criterion, such as a server failure for example that might trigger several
reviews with explanation needs. Furthermore, the Time context criterion,
includes the Future plans category which can not be related to the Date of
review criterion.

The criteria Verbs and W-Questions can indicate a possible interaction that
the user wanted to achieve with the app. This can also be covered from
the Targeted interaction type criterion. There can be cases though when the
interaction type can not be expressed through questions or verbs, like for
example, when the explanation needs are expressed implicitly. In such cases,
these criteria serve different functions, making it valuable to retain all of
them for a more comprehensive analysis.

Finally, the ISO-25010 [I] criteria also has some overlaps with other criteria.
One of these overlaps is the presence of the Security category, which appears
in both the ISO-25010 and App Aspects criteria. However, the subcategories
within each criterion differ, suggesting that while they cover similar concerns,
they do so from distinct perspectives.

Furthermore, the categories Performance efficiency and Reliability in the
150-25010 criteria are similar to the Bug and Unezpected system behaviour
subcategories. However, Performance efficiency and Reliability extend
beyond just detecting bugs, as they assess the overall system’s ability to
function as expected under different loads and environments, addressing
more structural or architectural issues that may not always be visible through
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isolated bugs. The Bugs and Unexpected System Behaviour criterion on
the other side, serves to group reviews based on the type of bug the user
encountered in the app that made them have explainability needs. Keeping
all of these criteria on the list can offer a broader perspective, although some
overlaps might exist.

5.3 Interview results

In this section, the results of the interview process will be presented. These
will be divided in two subsections. Firstly, the priorities of the criteria for
each of the previously mentioned use cases will be discussed. In order to
keep the presentation of the results in this section concise, only the most
important criteria per use case will be discussed. This includes the criteria
that have an average and median lower or equal than 2, which stands for a
rather high priority. Lastly, the answers to the more general questions will
also be presented. These include possible extensions to the use cases and
criteria, and also the opinions of the participants regarding this research.

5.3.1 Criteria priorities
1. Use case: Elicitation of requirements

For this use case, most of the criteria, especially the ones related to the
review metadata and those that can be gathered from NLP methods,
were considered not relevant since these criteria can not be used to gain
requirements from the stakeholders. Examples of such criteria include the
App version, Hardware, Date of Review, Costs or Punctuation, Verbs and
W-Questions.

From the rest of the criteria, Aspects and Targeted interaction type were
deemed the most relevant for this case. Additionally the ISO-25010 Quality
model and the System Behaviour criteria were also prioritized highly. These
criteria were viewed as particularly useful, because of the fact that these
criteria provide categories and subcategories that can aid in the process of
eliciting explainability requirements for an application. These criteria can
offer a strong basis when gathering requirements which can lead to a better
development process.

2. Use case: Manual categorisation of explainability needs in app
reviews

For this use case, the criteria Aspects, System behaviour and Targeted
interaction type were seen as the criteria with the highest general priority.
The participant mentioned that through these criteria, you could a get a
good perspective on what the issue in the review is.
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Furthermore, the App wersion and the Costs were also seen as very
important. The App version criterion helps in aligning user-reported issues
with specific versions of the app, making it easier to identify and address
problems efficiently. The Costs criterion depends strongly on how it can
be implemented and which person estimates the costs. If this can be
implemented correctly by the user of this list, it can be a very important
criterion when prioritising app reviews.

Lastly, the User experience, Time context and Features feedback criteria were
also rated as high priority criteria. These criteria were also seen to offer
interesting insights that can be helpful in the categorisation and prioritisation
of explainability needs in app reviews.

3. Use case: Automatic categorisation of explainability needs in
app reviews

For this use case, the criteria selected were mostly similar to the manual
categorisation use case with a few differences. The Costs and User
Ezxperience criteria were assigned lower priority in this use case, as these
aspects were considered more suited for manual assessment by a person
rather than being reliably handled by automated systems.

Furthermore, the criteria W-Questions and Verbs were seen as important
for this use cases. Participants noted that these criteria are well-suited for
automation since they can be efficiently identified and processed by NLP
algorithms, offering a fast and accurate way to categorize explainability needs
in reviews.

The full list of results from the prioritisation part of the interview are
summarised in Table This includes the specific priority given by each
participant for each use case (column I1-16) as well as the average and median
of each criteria per use case.
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5.3.2 Rest of the questions

In the final part of the interview, participants were asked for suggestions on
extending the list of criteria and use cases and also whether they would
use these criteria in their work environments. The first question asked
participants if they thought the criteria list could be applied in additional
use cases. The interviewees proposed several new use cases, which are
summarised below:

e Ticket management system

e Categorising offer inquiries

e Categorise general user feedback

e Categorise general user user experience in service-oriented industries

The suggestions included the usage of the criteria within a ticket management
system, such as JIRAE| , where users could categorise the client-submitted
tickets using these criteria. Another proposed use case was the usage of
criteria to categorise and process offer inquiries. One participant explained
that after an offer for the development of a requirement has been sent, often
it returns with questions or unclarities from the client. These criteria can
be used to categorise these questions. Other participants also mentioned
that the criteria can be used to categorise general user feedback and user
experience in service-oriented industries, by extending the scope of the usage
of the criteria outside just categorising app reviews.

Furthermore, the participants were asked whether they would use these
criteria in their work environment and in what contexts. They mostly
answered that they would use them to categorise client feedback or for
incident analysis. The criteria could be even more helpful if it could be
integrated in the ticket management systems that are used commonly to
categorise clients tickets. Only one of the participants answered with "No".

Another question was whether the participants could expand the criteria list
with further criteria that had not been previously mentioned. Following new
criteria were suggested:

e Escalation level

Star rating

Age of the user

Hours of usage by the user of the app

Level of expertise of the user

Thttps://www.atlassian.com/de/software/jira
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e Priority label

The criteria Fscalation level and Priority label would serve as a priority set
by the client or user which writes the review or ticket, depending on the
use case. These criteria could significantly impact the prioritization process.
Star rating is related to the rating that the user gave when writing the
review. This can be similar to the UX and Sentiment criteria. Reviews
with a lower star rating could receive higher priority since they would be a
bad advertisement for the application. The other suggested criteria included
information regarding the user and their experience with the app. This would
include the Age of the user, Hours of usage by the user of the app and the
Level of expertise of the user, which could prove helpful especially in more
complex application. This would allow for better categorising from who the
review is coming from and if some explanation needs come from the same
users of the same age, or from the ones with the same level of expertise.

The participants were finally asked to evaluate this study. To the question
how reasonable did they find this study, 4 answered with "very reasonable"
and 2 with "rather reasonable". Furthermore, they were asked whether they
would change anything in this study. Four of the participants answered
with "No". One participant suggested that the use cases could benefit from
more differentiation, as the manual and automatic categorization use cases
seemed similar. Another participant suggested leaving the prioritization and
categorization tasks for the automatic categorization use case to a machine
learning model, which could potentially yield more accurate results.

Finally, the users were asked if they had any other remarks regarding this
study. One of the answers was regarding extending the prioritisation columns
in order to account for different processes, such as the prioritisation and
implementation of the criteria. For these two processes, the prioritisation of
the criteria could be different, since some criteria might be more helpful but
are harder to implement. Two participants found that conducting interviews
rather than surveys was more helpful and advantageous, since it allowed
for more interaction and allowed the participants to ask for explanations if
something was unclear. The other three participants answered with "No".



Chapter 6

Discussion

In this chapter, the research questions will be answered and the results will
be discussed and interpreted. Furthermore, the threats to validity will be
presented.

6.1 Answering the research question

In Chapter [1}, following research questions were presented:

RQ1 What criteria can support the categorization and prioritization of
explanation needs in app reviews?

RQ2 Which of these criteria are prioritized highest by requirements engi-
neers?

To answer RQ1, a list of criteria that can help in categorising and prioritising
explainability needs in app reviews was developed. The development of this
list involved multiple stages, with iterative improvements made throughout
the thesis. The final list includes criteria was build through different
sources. Firstly, some of the criteria were developed after a study of
a dataset that contained around 3,000 reviews with explainability needs.
Additional criteria were drawn from metadata that could be found within
the reviews themselves, such as information on the user, date of review, and
version of app and hardware that was used. Other considerations included
review statistics and information obtained through (NLP) techniques.
These additions enriched the criteria by introducing linguistic elements like
sentiment analysis, punctuation , length of review, verbs used and question
asked. Finally, external factors, such as costs associated with addressing
the explainability needs, were also incorporated, providing a more practical
perspective. Together, these criteria allow for a more structured, precise, and
contextually informed approach to identifying and addressing explainability
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needs in app reviews. The final list included the following criteria:

1.
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23.
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App Aspect

App version

Costs

Date of review

Explanation need expression
Features feedback

Frequency of explanation need
Genre

Hardware used

ISO-25010 Quality model

. Length of review

. Name of app

. Operation system used
. Prioritisation of explanation need
. Punctuation

. Sentiment of review

. System Behaviour

. Targeted interaction type
. Time context

. User experience (UX)

. Username

. Verbs

W-Questions

To these criteria, the suggestions from the participants in the interview can
also be added. That included the following criteria:

1.
2.

Age of user

Escalation level

3. Hours spent from the user using the app

4. Priority label from the user or client
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5. Stars given in the review
6. Users level of expertise

Through these criteria one can categorise and prioritise explainability needs
in app reviews in a more precise and informed way.

The importance of each criterion varies based on the intended use case, an
insight that was central to answering RQ2. To explore the criteria’s applica-
bility across various scenarios, interviews were conducted with requirements
engineering experts who prioritized these criteria according to specific use
cases. This process revealed that different use cases often led to different
priority levels for the criteria. However, there were also criteria that were
considered important for all use cases, such as App Aspects, System behaviour
or Targeted interaction type criteria. Some other criteria that were also
frequently highlighted as valuable were the App wversion, User Experience
and Feature feedback. These criteria offer nuanced insights into the review
content, user sentiment, and specific app functionalities that caused the need
for explainability, therefore allowing for targeted and meaningful responses
to users’ explainability needs.

6.2 Discussing the results

From the interview results we can notice that depending on the use case,
different criteria are seen as more useful. This is because different use
cases need different types of information that is provided by the criteria.
Furthermore, the criteria have different implementation availability and costs
for different use cases. For example, for the Elicitation use case, metadata-
related criteria were largely seen as unhelpful because they do not directly
support the gathering of user requirements. Furthermore, the FEstimated
Costs criterion was preferred mostly for the manual categorisation, which is
done by a physical person, instead of for the automatic categorisation use
case. The participants argued that the estimation would be more accurate
and helpful if it came from a person rather than from an algorithm.

The interview participants offered some interesting views on how to further
extend this study. They proposed different new use cases in which the
gathered criteria from this thesis can be used. The suggested use cases
were ticket categorisation and processing in a ticket management system,
categorisation of feedback from users or clients, incident management and
inquiry processing. While these use cases generally revolve around feedback
categorization, they vary by context and require different implementation
approaches.

The participants proposed these use cases, because they are in contact with
them in their work environments. They felt that this list of criteria could
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be useful in their work context, if an implementation for the aforementioned
use cases could be achieved. This shows that the criteria have the potential
to be helpful to categorise explainability needs not only in app reviews but
also in other contexts beyond the original scope of this study.

Furthermore, the interviewees also offered very interesting insights regarding
extending the list of criteria. One of the suggestions was to include a type
of client-priority indicator, which could be a Priority label or an Escalation
level, which is to be set by the writer of the review or feedback, depending
on the use case. This criterion can be useful to stakeholders, such as
app developers and project managers, in helping them prioritize tickets or
reviews by emphasizing issues deemed particularly urgent by users. Another
recommended criterion was the Star review given alongside app reviews.
This criterion can be useful to highlight reviews, especially in cases where
the star review is low, which need to be tackled as soon as possible to avoid
having negative reviews for the app, which might discourage potential future
users.

This criterion is especially important for project managers, who are respon-
sible also for the reputation of the app and need to make sure that the issues
can be prioritised accordingly in order to keep the rating as high as possible.
Furthermore, this criterion also allows another important stakeholder, the
end users, to directly have an input in the prioritising process.

Finally, the other criteria that were suggested were related to information
about the user that wrote the review or the ticket. These include the hours
of usage from the user of the app, the age of the user and the expertise
level of the user. These criteria can allow for better grouping from who the
explainability needs come from and can allow from specific measures. For
example, if a lot of the same type of explainability needs come from older
users but not from younger ones, this means that there is an age-related
usability gap that requires attention, especially if it is an age group that
is considered as targeted audience. If some explainability needs come from
users that have low levels of expertise, but not from those with a high level
of expertise, this means that the app may benefit from more guidance for
beginners.

Data scientists can combine these criteria, along with others from the
list such as the App Aspects criterion, to gain a more comprehensive
understanding of their user base and the specific needs that the users face. By
analyzing these factors together, they can uncover patterns or trends that
may not be apparent when viewed in isolation. For example, researchers
might investigate whether there is a correlation between issues related to
the UI criterion and the Age of the user criterion, which could reveal age-
specific explainability needs related to the UI of the app. Such insights
could help inform targeted improvements, refine user interface design, and
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ultimately enhance user satisfaction across different demographic groups.
This multifaceted analysis provides a valuable basis for prioritizing updates
and tailoring solutions to meet the diverse needs of the app’s audience.

The participants were also asked in the final part of the interview regarding
their general thoughts about this study. The responded that they found the
study to be very useful and that it showed a lot of potential. If the end-
objective of creating a pipeline in which app reviews would be automatically
categorised and than forwarded to the appropriate person of interest, or
even to be automatically responded or acted upon, would be achieved,
than this would be a huge step in service-oriented industries. Furthermore,
the participants appreciated the choice of conducting this study through
interviews rather than through surveys. This was mostly because of the fact
that the participants could ask questions if something was unclear and also
ask for examples, especially when dealing with the criteria list.

Finally, the participants made some suggestions regarding potential changes
in the organisation of the study. It was suggested that for the automatic
categorisation use case, the criteria could be selected by a machine learning
model instead of a human, since this could produce more accurate results.
Furthermore, the priority columns for the criteria could be extended to
include different processes, such as the priority of the criteria but also the
implementation feasibility. This is because some criteria can be seen as
useful, but are in fact harder to implement, which can affect the general
priority of a criteria for a use case. Therefore, a separated evaluation for each
of these processes regarding the criteria can offer more precise information.

6.3 Threats to validity

In order to discuss the Validity Threats of this master thesis, the Threats
presented by Wohlin et al. [38] will serve as the basis.

The number of participants in the interview process (6) could be relatively
small. The participants mostly work in medium-sized companies, while the
rest work at big companies. Also, the participants do not deal much with
app reviews in their work environment. This relatively narrow range of
backgrounds could limit the diversity of perspectives, which may impact
the ability to generalise the findings of this study. This could influence the
validity of the results when trying to generalise them. This results in a Threat
to Conclusion Validity. By interviewing more people, also from a wider
array of professional backgrounds, especially those with direct experience in
app review processes and gathering more priorities and opinions, even more
valuable results could be gathered, which would than mitigate this threat.

The validation process of the new criteria that were created in this theses
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was done only with a subset of the full app review dataset and the reviews
were labeled by only two raters. This could pose an Threat to the Internal
Validity. This threat could be mitigated by labeling the full dataset by
even more raters, so that a broader study can be done on the validity and
completeness of the new criteria.

The results of the interviews could have also been influenced by the fact that
most of the participants were not very familiar with the term and definition
of explainability. Therefore, it might have been difficult for them to grasp
the full extent of the usage of explainability. Furthermore, the use cases were
also mostly new to the participants and this might also have an effect on their
responses. Both of these factors result in a Construct Validity Threat. In
order to mitigate this threat, the presentation phase of the interview included
clear definitions of both explainability and the relevant use cases.

Finally, another potential threat is that not all criteria relevant to categoriz-
ing and prioritizing explainability needs in app reviews may have been iden-
tified. This would represent a Construct Validity Threat. While it is possible
that additional criteria may exist, the ones presented here represent, to the
best of current knowledge, a comprehensive range of information to support
effective decision-making in categorising and prioritising explainability needs
in app reviews.



Chapter 7

Conclusions

In this chapter, a summary of the overall contributions of this thesis will be
presented, along with an outlook regarding the possible future works that
can extend the scope of this study.

7.1 Summary

This thesis focuses on the development of a comprehensive list of criteria for
categorizing and prioritizing explainability needs in app reviews. Addressing
explainability in user feedback is essential for improving user satisfaction,
enhancing app usability, fostering user trust in the software system and
ensuring that developers can respond effectively to user concerns. To
build this criteria list, several steps were taken. Firstly, an analysis of
approximately 3,000 app reviews was conducted. This lead to the creation
of several new criteria that were not fully covered in previous related works.
These new criteria were validated through a pre-study with explainability
experts. The validated criteria were added to the list which includes other
elements such as metadata about the user, app, and review, as well as NLP-
derived insights and external factors, such as estimated costs, for addressing
user concerns.

To assess the relevance and prioritization of these criteria in real-world
settings, interviews were conducted with six field experts. The experts
were asked to evaluate the criteria based on predefined use cases, which
were requirement elicitation, manual and automatic categorization. They
provided feedback on the practical value of each criterion, offering insights
into which criteria might hold the most utility depending on the specific use
case. There were criteria that were deemed important for all three use cases
and others that were prioritised differently based on the specific use case.

The interviewees were also asked to asses the usefulness of this study and
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their feedback was largely positive, with experts confirming the potential
value of these criteria in their work environments. They suggested a few
extensions for future refinement, such as incorporating priority levels or user
characteristics to better tailor criteria to different feedback scenarios. Ad-
ditionally, several new potential applications for the criteria were identified,
including ticket management and incident processing systems, highlighting
the criteria’s broader applicability beyond app reviews alone.

Overall, this study shows that there are different criteria that can help in
different contexts regarding explainability and that a structured approach to
categorising explainability needs has the potential to be helpful in addressing
users issues. The study’s conclusions offer a practical basis for further
integrating explainability considerations into app feedback management and
related fields, potentially making a significant impact on user-centered app
improvement.

To summarise, the contributions of this theses were multiple. Firstly,
a dataset that contained labeled reviews with explainability needs was
relabeled with new labels that try to identify and summarise the exact
explainability need. This lead to the creation of new criteria that were
not covered in previous related works. These criteria went through
several iterations of development, including several validation steps with
explainability experts. Furthermore, a criteria list was developed which
can help in categorising and prioritising explainability needs. This list was
prioritised for different use cases by industry experts. The same experts also
provided suggestions regarding potential extensions of this study, both in
expanding the criteria list, as well as expanding the use cases. Finally, a
subset of the initial dataset was relabeled again with some of the criteria
that were prioritised most highly from the experts.
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7.2 Outlook and Future works

An important avenue for future research in this area would be expanding
the criteria list to accommodate a wider variety of app feedback contexts
and refining it based on more diverse datasets. For instance, studies
incorporating feedback from other platforms, such as social media or direct
customer support channels, could reveal additional nuances in explainability
needs. Integrating a more extensive NLP framework could also refine existing
criteria, potentially enabling more detailed sentiment analysis and better
contextual understanding of user feedback. Additionally, testing this criteria
list across diverse app genres and platforms (e.g., mobile, web, desktop)
would offer insights into genre-specific explainability needs, making the
approach even more versatile and effective.

Another important future work lies in developing automated tools that
incorporate machine learning to classify and prioritize explainability needs
based on the proposed criteria. By training models on annotated datasets,
researchers could automate criteria selection and ranking to improve con-
sistency and scalability. This would create a streamlined pipeline where
explainability-related reviews are immediately flagged and prioritized, saving
developers time and effort. This would allow for a more efficient decision
making process and would enable developers to act faster on pressing
explainability issues. Future studies could also explore how user-specific
data, such as user expertise or app usage frequency, might be incorporated
into the prioritization process to deliver more tailored support.

Furthermore, involving a wider pool of field experts from various professional
backgrounds—especially those directly involved in user support and app
development could deepen the understanding of each criterion’s value in
different contexts. Broader industry participation could reveal additional
criteria or suggest new use cases, enriching the criteria list and solidifying
its relevance across industries.

Additionally, implementing this criteria-based approach in the aforemen-
tioned use cases, such as the manual and automatic categorisation and
prioritisation of explainability needs or even in a ticket management system
(e.g., JIRA) in the form of a plugin, could help implement this academic
research in an industry context, offering developers and managers a practical
tool to optimize the app feedback process while enhancing the user’s
experience and satisfaction.
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